-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_data.py
78 lines (68 loc) · 2.46 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import functools
from pathlib import Path
from shutil import rmtree
import h5py
import numpy as np
import skimage
from sklearn.ensemble import RandomForestClassifier
# This script is heavily based on the following scikit-image tutorial:
# https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_trainable_segmentation.html
SKIN = skimage.data.skin()
def train():
img = SKIN[:900, :900]
# Hardcoded training labels:
training_labels = np.zeros(img.shape[:2], dtype=np.uint8)
training_labels[:130] = 1
training_labels[:170, :400] = 1
training_labels[600:900, 200:650] = 2
training_labels[330:430, 210:320] = 3
training_labels[260:340, 60:170] = 4
training_labels[150:200, 720:860] = 4
features_func = functools.partial(
skimage.feature.multiscale_basic_features,
intensity=True,
edges=False,
texture=True,
sigma_min=1,
sigma_max=16,
channel_axis=-1,
)
features = features_func(img)
classifier = RandomForestClassifier(
n_estimators=50,
n_jobs=-1,
max_depth=10,
max_samples=0.05
)
classifier = skimage.future.fit_segmenter(training_labels, features, classifier)
return features_func, classifier
def predict_probabilities(image, features_func, classifier):
features = features_func(image)
if features.ndim > 2:
features_flat = features.reshape((-1, features.shape[-1]))
probabilities_flat = classifier.predict_proba(features_flat)
probabilities = probabilities_flat.reshape(features.shape[:-1] + (-1,))
return probabilities
def save_image_and_probabilities(folder, image, probabilities):
rmtree(folder, ignore_errors=True)
folder.mkdir(parents=True)
with h5py.File(folder / f"data.hdf5", "w") as f:
f.create_dataset("image", data=image)
f.create_dataset("probabilities", data=probabilities)
for c in range(4):
np.savetxt(folder / f"{c}.csv", probabilities[..., c])
def main():
features_func, classifier = train()
image = SKIN
probabilities = predict_probabilities(image, features_func, classifier)
for key, scale in {"s": 1, "m": 2, "l": 4, "xl": 6}.items():
reps = (scale, scale, 1)
image_tiled = np.tile(image, reps)
probabilities_tiled = np.tile(probabilities, reps)
save_image_and_probabilities(
Path(f"data/{key}"),
image_tiled,
probabilities_tiled
)
if __name__ == "__main__":
main()