相关推荐:
读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:
-----------
上篇文章用贪心算法解决了区间调度问题:给你很多区间,让你求其中的最大不重叠子集。
其实对于区间相关的问题,还有很多其他类型,本文就来讲讲区间合并问题(Merge Interval)。
LeetCode 第 56 题就是一道相关问题,题目很好理解:
我们解决区间问题的一般思路是先排序,然后观察规律。
一个区间可以表示为 [start, end]
,前文聊的区间调度问题,需要按 end
排序,以便满足贪心选择性质。而对于区间合并问题,其实按 end
和 start
排序都可以,不过为了清晰起见,我们选择按 start
排序。
显然,对于几个相交区间合并后的结果区间 x
,x.start
一定是这些相交区间中 start
最小的,x.end
一定是这些相交区间中 end
最大的。
由于已经排了序,x.start
很好确定,求 x.end
也很容易,可以类比在数组中找最大值的过程:
int max_ele = arr[0];
for (int i = 1; i < arr.length; i++)
max_ele = max(max_ele, arr[i]);
return max_ele;
# intervals 形如 [[1,3],[2,6]...]
def merge(intervals):
if not intervals: return []
# 按区间的 start 升序排列
intervals.sort(key=lambda intv: intv[0])
res = []
res.append(intervals[0])
for i in range(1, len(intervals)):
curr = intervals[i]
# res 中最后一个元素的引用
last = res[-1]
if curr[0] <= last[1]:
# 找到最大的 end
last[1] = max(last[1], curr[1])
else:
# 处理下一个待合并区间
res.append(curr)
return res
看下动画就一目了然了:
至此,区间合并问题就解决了。本文篇幅短小,因为区间合并只是区间问题的一个类型,后续还有一些区间问题。本想把所有问题类型都总结在一篇文章,但有读者反应,长文只会收藏不会看... 所以还是分成小短文吧,读者有什么看法可以在留言板留言交流。
本文终,希望对你有帮助。
_____________
刷算法,学套路,认准 labuladong,公众号和 在线电子书 持续更新最新文章。
本小抄即将出版,微信扫码关注公众号,后台回复「小抄」限时免费获取,回复「进群」可进刷题群一起刷题,带你搞定 LeetCode。
======其他语言代码======