-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalgorithms.py
350 lines (318 loc) · 13.6 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# algorithms.py
# ----------
# HMM_TMRCA Project
# Licensing Information: Please do not distribute.
# You are free to use and extend these code for educational purposes.
# ProblemSet written by professor Yun S. Song
# Solution and code written by Jae Young Ryoo ([email protected]) and Saba Khalilnaji
import sys, math, util, hmm
#######################################################################################
"""
Helper Methods
logSum: takes in a list of logs and performs an efficient sum of their exponentials
using the identity: R = P + log(1 + exp(Q - P)), where P = log(p), Q = log(q)
INPUT: (list) a list of log values
OUTPUT: (Float) an efficient sum of their exponentials
"""
def logSum(listToSum):
if len(listToSum) == 0:
print "Error: Transition Probability of 0"
return
sumToReturn = listToSum[0]
for i in range(1, len(listToSum)):
sumToReturn = sumToReturn + math.log(1 + math.exp(listToSum[i] - sumToReturn))
return sumToReturn
"""
posterior_decoding
INPUT: HMM Model, (list) emissions
OUTPUT: (list) of posteriors
primarily used for testing, not part of project code
"""
def posterior_decoding(model, emissions):
forwardList = getForwardList_log(model, emissions)
forwardLog = logSum([forwardList[len(forwardList)-1][state] for state in model.getStates()])
backwardList = getBackwardList_log(model, emissions)
posterior = []
for i in range(len(emissions)):
counterOfStates = util.Counter()
for s in model.getStates():
counterOfStates[(i,s)] = (forwardList[i][s] + backwardList[i][s]) - forwardLog
posterior.append(counterOfStates.argMax()[1])
return posterior
#######################################################################################
"""
The forward algorithm
This calculates P(X|Theta)
f_k is a counter where the keys are k
a list of f_k represents the passage of time
where the index is t
"""
def forward(model, emissions):
f = util.Counter()
for state in model.getStates():
f[state] = model.p(state)*model.e(state, emissions[0])
for b in emissions[1:]:
f_next = util.Counter()
for state_l in model.getStates():
f_next[state_l] = model.e(state_l, b) * sum([model.a(state_k, state_l)*f[state_k] for state_k in model.getStates()])
f = f_next.copy()
return f.totalCount()
"""
The forward algorithm in log space
This calculates P(X|Theta)
f_k is a counter where the keys are k
a list of f_k represents the passage of time
where the index is t
"""
def forward_log(model, emissions):
F = util.Counter()
for state in model.getStates():
F[state] = model.p_log(state) + model.e_log(state, emissions[0])
for b in emissions[1:]:
F_next = util.Counter()
for state_l in model.getStates():
F_next[state_l] = model.e_log(state_l, b) + logSum([model.a_log(state_k, state_l) + F[state_k] for state_k in model.getStates()])
F = F_next.copy()
return logSum(F.values())
"""
For the baum-welch algorithm we need f_k(t)
for every state k and for every t in len(emission)
instead of recalculating the same previous values
again we're just gonna store them sequentially
in a list of dictionaries
"""
def getForwardList(model, emissions):
f = util.Counter()
for state in model.getStates():
f[state] = model.p(state)*model.e(state, emissions[0])
forwardList = [f]
for b in emissions[1:]:
f_next = util.Counter()
for state_l in model.getStates():
f_next[state_l] = model.e(state_l, b) * sum([model.a(state_k, state_l)*f[state_k] for state_k in model.getStates()])
f = f_next.copy()
forwardList.append(f)
return forwardList
"""
getForwardList_log:
The same thing as getForwardList, but returns log values
"""
def getForwardList_log(model, emissions):
F = util.Counter()
for state in model.getStates():
F[state] = model.p_log(state) + model.e_log(state, emissions[0])
forwardList_log = [F]
for b in emissions[1:]:
F_next = util.Counter()
for state_l in model.getStates():
F_next[state_l] = model.e_log(state_l, b) + logSum([model.a_log(state_k, state_l) + F[state_k] for state_k in model.getStates()])
F = F_next.copy()
forwardList_log.append(F)
return forwardList_log
#######################################################################################
"""
The backward algorithm
This calculates P(X|Theta)
"""
def backward(model, emissions):
b = util.Counter()
#minor initialization nuance
for state in model.getStates() : b[state] = 1
emissions.reverse()
for q in emissions[:len(emissions)-1]:
b_prev = util.Counter()
for state_k in model.getStates():
b_prev[state_k] = sum([model.a(state_k, state_l)*model.e(state_l, q)*b[state_l] for state_l in model.getStates()])
b = b_prev.copy()
for state in model.getStates():
b[state] = model.p(state)*model.e(state, emissions[len(emissions)-1])*b[state]
return b.totalCount()
"""
backward_log:
The same thing as backward, but returns log values
"""
def backward_log(model, emissions):
B = util.Counter()
#minor initialization nuance
for state in model.getStates() : B[state] = math.log(1)
emissions.reverse()
for q in emissions[:len(emissions)-1]:
B_prev = util.Counter()
for state_k in model.getStates():
B_prev[state_k] = logSum([model.a_log(state_k, state_l) + model.e_log(state_l, q) + B[state_l] for state_l in model.getStates()])
B = B_prev.copy()
for state in model.getStates():
B[state] = model.p_log(state) + model.e_log(state, emissions[len(emissions)-1]) + B[state]
return logSum(B.values())
"""
Analogous to getForwardList:
For the baum-welch algorithm we need b_l(t)
for every state l and for every t in len(emission)
instead of recalculating the same previous values
again we're just gonna store them sequentially
in a list of dictionaries
Note: we have to return the reversed list because
we iterate backwards and in order for the list index, i
to match t we must reverse the list
"""
def getBackwardList(model, emissions1):
emissions = emissions1[:]
b = util.Counter()
#minor initialization nuance
for state in model.getStates() : b[state] = 1
emissions.reverse()
backwardList = []
for q in emissions[:len(emissions)-1]:
b_prev = util.Counter()
for state_k in model.getStates():
b_prev[state_k] = sum([model.a(state_k, state_l)*model.e(state_l, q)*b[state_l] for state_l in model.getStates()])
b = b_prev.copy()
backwardList.append(b)
b_last = util.Counter()
for state in model.getStates():
b_last[state] = model.p(state)*model.e(state, emissions[len(emissions)-1])*b[state]
backwardList.append(b_last)
backwardList.reverse()
return backwardList
"""
getBackwardList_log
The same thing as getBackwardList, but returns log values
"""
def getBackwardList_log(model, emissions):
B = util.Counter()
#minor initialization nuance
for state in model.getStates() : B[state] = math.log(1)
emissions.reverse()
backwardList_log = []
backwardList_log.append(B)
for q in emissions[:len(emissions)-1]:
B_prev = util.Counter()
for state_k in model.getStates():
B_prev[state_k] = logSum([model.a_log(state_k, state_l) + model.e_log(state_l, q) + B[state_l] for state_l in model.getStates()])
B = B_prev.copy()
backwardList_log.append(B)
B_last = util.Counter()
for state in model.getStates():
B_last[state] = model.p_log(state) + model.e_log(state, emissions[len(emissions)-1]) + B[state]
backwardList_log.reverse()
return backwardList_log
#######################################################################################
"""
The Baum-Welch Algorithm
The model is improved until the difference
between the log likelihood of the current model
previous model are under the threshold
"""
"""
baum_welch_log
this is the baum_welch algorithm running in log-space
INPUT: HMM model, (list) of training sequences, (int) the number of times to run
OUTPUT: new HMM model based on new estimated parameters
"""
def baum_welch_log(model, sequences, numRuns):
for n in range(numRuns):
print "[baum_welch_log algo] BW_Iteration #: ", n + 1
sequenceFBList = []
for sequence in sequences:
forwardList = getForwardList_log(model, sequence[:])
forwardLog = logSum([forwardList[len(forwardList)-1][state] for state in model.getStates()])
backwardList = getBackwardList_log(model, sequence[:])
sequenceFBList.append((forwardList, forwardLog, backwardList))
#E-Step: Calculating the expected Transisions (A)
expectedTransitions = util.Counter()
print "[baum_welch_log algo] calculating transistions, please wait"
for k,l in [(k,l) for k in model.getStates() for l in model.getStates()]:
seqListA = []
for i in range(len(sequences)):
sequence = sequences[i]
forwardList = sequenceFBList[i][0]
forwardLog = sequenceFBList[i][1]
backwardList = sequenceFBList[i][2]
sumListA = []
for i in range(len(sequence)-1):
sumListA.append(forwardList[i][k] + model.a_log(k,l) + model.e_log(l, sequence[i+1]) + backwardList[i+1][l])
if len(sumListA) == 0:
print "Error: Transition Probability of 0 for Baum-Welch working in log-space"
return
seqListA.append(logSum(sumListA) - forwardLog)
if len(seqListA) == 0:
print "Error: Transition Probability of 0 for Baum-Welch working in log-space"
return
expectedTransitions[(k,l)] = logSum(seqListA)
#E-Step: Calculating the expected emissions (E)
expectedEmissions = util.Counter()
print "[baum_welch_log algo] calculating emissions, please wait"
for k,b in [(k,b) for k in model.getStates() for b in model.getEmissions()]:
seqListB = []
for i in range(len(sequences)):
sequence = sequences[i]
forwardList = sequenceFBList[i][0]
forwardLog = sequenceFBList[i][1]
backwardList = sequenceFBList[i][2]
sumListB = []
for i in range(len(sequence)):
if sequence[i] == b:
sumListB.append(forwardList[i][k] + backwardList[i][k])
if len(sumListB) == 0:
print "Error: Transition Probability of 0 for Baum-Welch working in log-space"
return
seqListB.append(logSum(sumListB) - forwardLog)
if len(seqListB) == 0:
print "Error: Transition Probability of 0 for Baum-Welch working in log-space"
return
expectedEmissions[(k,b)] = logSum(seqListB)
#M-Step
print "[baum_welch_log algo] Within the M-Step, please wait"
new_a = {}
for k,l in [(k,l) for k in model.getStates() for l in model.getStates()]:
new_a[(k,l)] = expectedTransitions[(k,l)] - logSum([expectedTransitions[(k,l_2)] for l_2 in model.getStates()])
new_e = {}
for k,b in [(k,b) for k in model.getStates() for b in model.getEmissions()]:
new_e[(k,b)] = expectedEmissions[(k,b)] - logSum([expectedEmissions[(k,b_2)] for b_2 in model.getEmissions()])
model = hmm.HMM(True, model.getStates(), model.getEmissions(), new_a, new_e, model.getMarginal_log())
return model
#######################################################################################
"""
decodings (viterbi, posterior, posterior mean)
INPUT: HMM model, (list) of emissions
OUTPUT: (list) of 3-tuple: (viterbi, posterior, posterior mean)
"""
def decodings(model, emissions):
stateMapper = {1:0.32, 2:1.75, 3:4.54, 4:9.40}
V = util.Counter()
ptr = util.Counter()
forwardList = getForwardList_log(model, emissions[:])
backwardList = getBackwardList_log(model, emissions[:])
logLikelihood = logSum([forwardList[len(forwardList)-1][state] for state in model.getStates()])
for state in model.getStates():
V[state] = model.p_log(state) + model.e_log(state, emissions[0])
pointers = []
emissionsOld = emissions[:]
emissions = emissions[1:]
for t in range(len(emissions)):
V_next = util.Counter()
ptr = util.Counter()
for state_l in model.getStates():
maxCounter = util.Counter()
for state in model.getStates():
maxCounter[state] = model.a_log(state, state_l) + V[state]
ptr[state_l] = maxCounter.argMax()
V_next[state_l] = model.e_log(state_l, emissions[t]) + max([model.a_log(state_k, state_l) + V[state_k] for state_k in model.getStates()])
pointers.append(ptr)
V = V_next.copy()
lastState = V.argMax()
values = [lastState]
posterior = []
for i in range(len(emissionsOld)):
counterOfStates = util.Counter()
for s in model.getStates():
counterOfStates[(i,s)] = (forwardList[i][s] + backwardList[i][s]) - logLikelihood
mean = sum([stateMapper[state]*math.exp(counterOfStates[(i,state)]) for state in model.getStates()])
posterior.append((counterOfStates.argMax()[1], mean))
pointers.reverse()
for i in range(len(pointers)):
lastState = pointers[i][lastState]
values.append(lastState)
values.reverse()
finalValues = [(values[i],posterior[i][0], posterior[i][1]) for i in range(len(posterior))]
return finalValues