-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUnify.idr
200 lines (164 loc) · 5.97 KB
/
Unify.idr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
module Unify
import LType
import Substitution
import Data.Vect
import Data.HVect
%default total
subbedContains : (s : Subst) -> LTypeContains x a -> LTypeContains (apply s x) (apply s a)
subbedContains s Here = Here
subbedContains s (OnLeft loc) = OnLeft $ subbedContains s loc
subbedContains s (OnRight loc) = OnRight $ subbedContains s loc
hlp : TApp a b = a -> Void
hlp Refl impossible
hlp2 : TApp a b = b -> Void
hlp2 Refl impossible
occurs : LTypeContains (TVar x) t -> (TVar x = t -> Void)
-> (s : Subst) -> lookup x s = apply s t -> Void
occurs Here notHere _ _ = notHere Refl
occurs (OnLeft xOnLeft) _ s claim =
noContainmentLoops
(subbedContains s xOnLeft)
(rewrite claim in OnLeft Here)
(rewrite claim in hlp)
occurs (OnRight xOnRight) _ s claim =
noContainmentLoops
(subbedContains s xOnRight)
(rewrite claim in OnRight Here)
(rewrite claim in hlp2)
public export
Unifies : Subst -> LType -> LType -> Type
Unifies s a b =
apply s a = apply s b
UnifiesAll : Subst -> Vect _ (LType, LType) -> Type
UnifiesAll s = HVect . map (uncurry $ Unifies s)
public export
IsMGU : Subst -> LType -> LType -> Type
IsMGU s a b =
( Unifies s a b
, (s2 : Subst) -> Unifies s2 a b
-> (s3 ** ((x:LType)-> apply s2 x = apply s3 $ apply s x))
)
public export
UnificationResult : LType -> LType -> Type
UnificationResult a b =
Either
((s : Subst) -> Unifies s a b -> Void)
(s : Subst ** IsMGU s a b)
bindPrf : (s2 : Subst) -> (s2prf : apply s2 (TVar x) = apply s2 y)
-> (any : LType) -> apply s2 any = apply s2 (apply (x |-> y) any)
bindPrf s2 s2prf (TApp y z) =
rewrite bindPrf s2 s2prf y in
rewrite bindPrf s2 s2prf z in
Refl
bindPrf {x} {y} s2 s2prf (TVar k) with (decEq x k)
bindPrf {x} {y} s2 s2prf (TVar k) | (No contra) =
rewrite noOpSubst y (tvarNotInDifferentTvar contra) in Refl
bindPrf {x} {y} s2 s2prf (TVar k) | (Yes prf) =
rewrite sym prf in
rewrite singletonSubst {a=x} {b=y} in s2prf
bindPrf s2 s2prf (TConst y) = Refl
bind : (a : TypeVarName) -> (b : LType) -> UnificationResult (TVar a) b
bind x y =
case decLTypeContains (TVar x) y of
No contra => Right (x |-> y **
( rewrite singletonSubst {a=x} {b=y} in
rewrite noOpSubst y contra in Refl
, \s2, s2prf => (s2 ** \any => bindPrf s2 s2prf any)
)
)
Yes xInY =>
case y of
TVar yvar => Right (neutral **
( rewrite nullsubstIsNoOp (TVar x) in
rewrite nullsubstIsNoOp (TVar yvar) in
case xInY of
Here => Refl
, \s2, _ => (s2 ** \any => rewrite nullsubstIsNoOp any in Refl)
)
)
TApp a b => Left $ occurs xInY (\Refl impossible)
TConst _ => Left $ absurd $ tvarNotInConst xInY
canTransformMore : (pairs : Vect _ (LType, LType)) -> UnifiesAll s pairs -> UnifiesAll (s2 <+> s) pairs
canTransformMore [] x = x
canTransformMore {s} {s2} ((a, b) :: t) (unifiesH :: unifiesT) =
( rewrite applySeqIsApplyApply s2 s a in
rewrite applySeqIsApplyApply s2 s b in
cong unifiesH
) :: canTransformMore t unifiesT
mutual
unifyMany :
(pairs : Vect _ (LType, LType))
-> Either
((s : Subst) -> UnifiesAll s pairs -> Void)
(s : Subst **
( UnifiesAll s pairs
, (s2 : Subst) -> UnifiesAll s2 pairs
-> (s3 : Subst ** (x : LType) -> apply s2 x = apply s3 $ apply s x)
)
)
unifyMany [] = Right (neutral **
([], \s2, _ =>
(s2 ** (\x => rewrite nullsubstIsNoOp x in Refl))
)
)
unifyMany ((a, b) :: rest) = case unifyMany rest of
Left contra =>
Left $ \s, (_ :: sUnifiesRest) => contra s sUnifiesRest
Right (s ** (sUnifies, sMGUprf)) =>
case assert_total $ unify (apply s a) (apply s b) of
{- If the substitution does something, the number of
different type variables in the type decreases. Thus
progress is always made.
-}
Left contra => Left $ \unicorn, (unifiesThis :: unifiesRest) =>
let (sToUnicorn ** sToUnicornPrf) = sMGUprf unicorn unifiesRest
in contra sToUnicorn $
rewrite sym $ sToUnicornPrf a in
rewrite sym $ sToUnicornPrf b in unifiesThis
Right (s2 ** (prf, mguprf)) =>
Right $ (s2 <+> s **
( rewrite applySeqIsApplyApply s2 s a in
rewrite applySeqIsApplyApply s2 s b in
prf :: canTransformMore rest sUnifies
, \unifier, (unifiesThis :: unifiesRest) =>
let
(sToUnifier ** sToUnifierPrf) = sMGUprf unifier unifiesRest
(s2ToUnifier ** s2ToUnifierPrf) = mguprf sToUnifier $
rewrite sym $ sToUnifierPrf a in
rewrite sym $ sToUnifierPrf b in unifiesThis
in
(s2ToUnifier ** \x =>
rewrite sToUnifierPrf x in
rewrite s2ToUnifierPrf (apply s x) in
rewrite applySeqIsApplyApply s2 s x in Refl
)
)
)
export
unify : (a : LType) -> (b : LType) -> UnificationResult a b
unify (TApp x y) (TApp z w) =
case unifyMany [(x, z), (y, w)] of
Left contra => Left $ \s, eq => contra s [fstEqIfEq eq, sndEqIfEq eq]
Right (s ** ([unifiesXZ, unifiesYW], mguprf)) => Right (s **
( rewrite unifiesXZ in
rewrite unifiesYW in Refl
, \s2, eq => mguprf s2 [fstEqIfEq eq, sndEqIfEq eq]
)
)
unify (TConst x) (TConst y) =
case decEq x y of
Yes prf => Right (neutral **
( cong prf
, \s2, _ => (s2 ** \t => rewrite nullsubstIsNoOp t in Refl)
)
)
No contra => Left $ \_, Refl => contra Refl
unify (TVar x) y = bind x y
unify x (TVar y) =
case bind y x of
Left contra => Left $ \s => negEqSym $ contra s
Right (s ** (prf, mguprf)) =>
Right (s ** (sym prf, \s2, s2prf => mguprf s2 $ sym s2prf))
-- Mismatch cases
unify (TApp _ _) (TConst _) = Left $ \_ => \Refl impossible
unify (TConst _) (TApp _ _) = Left $ \_ => \Refl impossible