-
Notifications
You must be signed in to change notification settings - Fork 309
/
logistic_mandelbrot.py
582 lines (414 loc) · 16.4 KB
/
logistic_mandelbrot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
"""
Written by Jonny Hyman, 2020
www.jonnyhyman.com
www.github.com/jonnyhyman
This code generates and renders 3D volumetric data of the
Mandelbrot set.
Note that volumetric rendering is very resource intensive so rendering out to
f rames might be the only option for most normal computers (not interactive)
Code structure is roughly:
- imports
- functions
- parameters
- runtime stuff
"""
from vispy.color import get_colormaps, BaseColormap
from vispy import app, scene, io
import vispy.visuals.volume
import vispy
from numba import jit, njit, prange
from time import time
import vispy.io as io
import numpy as np
import math
from pathlib import Path
import os
# ---- FUNCTIONS
def ffmpeg():
""" Render the frames we have created into a ProRes mov"""
global rec_prefix, project_name, dropbox_folder
convert_cmd = (f"""ffmpeg -f image2 -framerate 24"""
f""" -i {rec_prefix}/{project_name}/{project_name}_%d.png"""
f""" -c:v prores_ks -profile:v 3 {dropbox_folder}/{project_name}.mov""")
print('CONVERTING >>>', convert_cmd)
os.system(convert_cmd)
dir = (f"./{rec_prefix}/{project_name}")
print('REMOVING >>>', dir)
filelist = [f for f in os.listdir(dir) if f.endswith(".png") ]
for f in filelist:
os.remove(os.path.join(dir, f))
print(f"{project_name} is rendered")
quit()
@jit(nopython=True)
def filter3d_core(image, filt, result):
""" Core of 3D smoothing algorithm"""
M, N, O = image.shape
Mf, Nf, Of = filt.shape
Mf2 = Mf // 2
Nf2 = Nf // 2
Of2 = Of // 2
for i in range(Mf2, M - Mf2):
for j in range(Nf2, N - Nf2):
for k in range(Of2, O - Of2):
num = 0
for ii in range(Mf):
for jj in range(Nf):
for kk in range(Of):
num += (filt[Mf-1-ii, Nf-1-jj, Of-1-kk] * image[i-Mf2+ii, j-Nf2+jj, k-Of2+kk])
result[i, j, k] = num
@jit(nopython=True)
def filter3d(image, filt):
""" 3D smoothing algorithm to reduce Moire patterns """
result = np.zeros_like(image)
filter3d_core(image, filt, result)
return result
@njit(cache=True)
def linear_interp(x, in_min, in_max, out_min, out_max):
""" linear interpolation function
maps `x` between `in_min` -> `in_max`
into `out_min` -> `out_max`
"""
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min
@njit(cache=True)
def pix2point(shape, ix, iy, ovs=1):
""" find the nearest pixel to point `ix`, `iy`
in the plane with shape `shape`
ovs is the oversampling factor for spatial antialiasing
"""
cr = ((ix/ovs)*3.0/shape[0] - 2.0) # [0, width] > [-2, 1]
ci = ((iy/ovs)*2.0/shape[1] - 1.0) # [0, height] > [-1, 1]
return cr, ci
@njit(cache=True, parallel=True)
def make_mandelbrot(width, height, max_iterations):
"""
Create a 2D Mandelbrot set to use as a mask when we create the
3D mandelbrot dataset
Can be faster if parallel=False for small data sizes
"""
result = np.zeros((width, height))
# for each pixel at (ix, iy)
for iy in prange(height):
for ix in prange(width):
# start iteration at x0 in [-2, 1] and y0 in [-1, 1]
x0, y0 = pix2point(result.shape, ix,iy)
x = 0.0
y = 0.0
# perform Mandelbrot set iterations
for iteration in range(max_iterations):
# complex number multiplication
# z = z**2 + c
# z = x+yi
# c = x0 + y0i
x_new = x*x - y*y + x0
y = 2*x*y + y0
x = x_new
# if escaped
if x*x + y*y > 4.0:
# color using pretty linear gradient
color = 1.0
break
else:
# failed, set color to black
color = 0.0
result[ix, iy] = color
return result
@njit(cache=True)
def antialias(x,y,z,n,m,o):
"""
Core of spatial antialiasing
"""
i_nmo0 = int(round(x + n))
i_nmo1 = int(round(y + m))
i_nmo2 = int(round(z + o))
ic0 = 1 - abs(x - (i_nmo0 + 0.5))
ic1 = 1 - abs(y - (i_nmo1 + 0.5))
ic2 = 1 - abs(z - (i_nmo2 + 0.5))
return (ic0 * ic1 * ic2), i_nmo0, i_nmo1, i_nmo2
@njit(cache=True, parallel=True)
def make_triplebrot(mask, width, height, depth, max_iterations,
cutoff=500, oversample=1):
"""
Create the 3D dataset of Mandelbrot set / logistic map, dubbed `triplebrot`
mask : precomputed 2D mandelbrot set to quickly exclude points not in
the mandelbrot set
width, height, depth : x, y, z data dimensions
oversample : to decrease aliasing, we further subdivide x/y/z dimensions
by oversample to get more datapoints into the set
Iterates a typical mandelbrot set, but keeps z real iterates
x = c real
y = c imag
z = z real
"""
result = np.zeros((width, height, depth), dtype=np.float64)
nmo_range = np.array([-1,0,+1], dtype=np.int32)
# for each pixel at (ix, iy)
for iy in prange(height*oversample):
for ix in prange(width*oversample):
if mask[ix//oversample, iy//oversample] != 0:
# not in the mandelbrot set
continue
cr, ci = pix2point(result.shape, ix,iy, ovs = oversample)
zr = 0.0
zi = 0.0
# perform Mandelbrot set iterations
for iteration in range(max_iterations):
# complex number multiplication
# z = z**2 + c
# z = x+yi
# c = x0 + y0i
zr_new = zr*zr - zi*zi + cr
zi = 2*zr*zi + ci
zr = zr_new
# if escaped
if zr*zr + zi*zi > 4.0:
break
if iteration <= cutoff:
continue
x = result.shape[0]/3.0 * (cr+2.0) # [-2, 1] > [0, width]
y = result.shape[1]/2.0 * (ci+1.0) # [-1, 1] > [0, height]
z = result.shape[2]/4.0 * (zr+2.0) # [-2, 2] > [0, depth]
# blend into every neighboring voxel : spatial antialising
for n in nmo_range:
for m in nmo_range:
for o in nmo_range:
d, i_nmo0, i_nmo1, i_nmo2 = antialias(x,y,z,n,m,o)
if d > 1 or d <= 0:
continue
if (1 <= i_nmo0 < result.shape[0] and
1 <= i_nmo1 < result.shape[1] and
1 <= i_nmo2 < result.shape[2]):
d = max(0, d)
d = min(1, d)
# 1e-6 is an arbitrary "small" number
# can actually be anything as long as
# the eventual value doesn't exceed the max
# possible 64bit floating point value
result[i_nmo0, i_nmo1, i_nmo2] += 1e-6 * d
# here we reiterate exactly what we just did, but only along the x-z plane
# this enhances the logistic map which would otherwise be too faint
for iy in prange(result.shape[1]//2 - 1, result.shape[1]//2 +1):
for ix in prange(width*oversample):
if mask[ix//oversample, iy//oversample] != 0:
continue
cr, ci = pix2point(result.shape, ix,iy, ovs = oversample)
zr = 0.0
zi = 0.0
# perform Mandelbrot set iterations
for iteration in range(max_iterations):
# complex number multiplication
# z = z**2 + c
# z = x+yi
# c = x0 + y0i
zr_new = zr*zr - zi*zi + cr
zi = 2*zr*zi + ci
zr = zr_new
# if escaped
if zr*zr + zi*zi > 4.0:
break
if iteration <= cutoff:
continue
x = result.shape[0]/3.0 * (cr+2.0) # [-2, 1] > [0, width]
y = result.shape[1]/2.0 * (ci+1.0) # [-1, 1] > [0, height]
z = result.shape[2]/4.0 * (zr+2.0) # [-2, 2] > [0, depth]
d, i_nmo0, i_nmo1, i_nmo2 = antialias(x,y,z,0,0,0)
result[i_nmo0, i_nmo1, i_nmo2] += 1e-6
return result
# ---- PARAMETERS
f = 0 # start frame
F = 24*30 // 2 # frames per camera move
D = 100 # dimensions of all sides of the volume cube
# D = 1000 in final rendered animation
Omax = 1 # oversampling
# Omax = 16 in final rendered animation
#Omax seems to scale as: time to render in seconds = (3*o)**2.7 @ D=1000
# on a 64 core machine at 2.7GHz per core
I = 1500 # maximum iterations in the mandelbrot calculation
# rec_size = (2538, 1080) # frame resolution, that we used in the video
rec_size = (1280, 720) # a better resolution for most screens
# where to put the frames
rec_prefix = './frames'
project_name = f'fractal_mandelbrot_{D}'
frame_dir = Path(f'{rec_prefix}/{project_name}')
# Record frames?
rec = False
# Playback keyframes?
play = True
# Generate data?
generate = False
# ---- RUNTIME
data_prefix = './data'
datafile = f'{data_prefix}/fractal_mandelbrot_data{D}_iter{I}_ovs{Omax}.npz'
if not Path(rec_prefix).exists():
Path(rec_prefix).mkdir()
if not Path(data_prefix).exists():
Path(data_prefix).mkdir()
if not frame_dir.exists() and rec:
frame_dir.mkdir()
if not generate:
# Read volume
vol = np.load(datafile)['data']
else:
start = time()
mset = make_mandelbrot(D, D, I)
print("Made mandelbrot importance mask", time()-start)
start = time()
#for O in np.arange(2,Omax):
O = int(round(Omax))
# scales as: seconds = (3*o)**2.7
print("STARTED... D =",D,"O =",O)
if D == 1000:
print('ETA...', (100*(3*O/10)**2.7)/(60*60),'hrs' )
print(f"{project_name} at {D},{I},{O} started generating")
vol = make_triplebrot(mset, D, D, D, I, oversample=O)
print('DONE', time()-start)
GB = vol.size * vol.itemsize * 1e-9
print("SAVING GIGABYTES = ", GB)
np.savez(datafile, data=vol)
print("DUSTED!")
print(f"{project_name} at {D},{I},{O} is done and dusted"
f" {GB}GB after {time()-start}")
# Draw x,y,z axes into the data
#vol[:,0,0] = np.linspace(0,vol.max(),vol.shape[0])
#vol[0,:,0] = np.linspace(0,vol.max(),vol.shape[1])
#vol[0,0,:] = np.linspace(0,vol.max(),vol.shape[2])
# Data filtering / smoothing seems to reduce too much detail
# so it is deprecated here
#print("filtering")
#start = time()
#vol = filter3d(vol, np.ones( (2,)*3 ))
#print(f"done filtering! {(time()-start)/D**3} sec / voxel")
# Increase the visibility of the x-z plane (where the logistic map lies)
vol[:,vol.shape[1]//2,:] = np.sqrt(vol[:,vol.shape[1]//2,:])
# Slice the data to reveal only the logistic map
slice = 0
if slice:
vol = vol[:,vol.shape[1]//2 -1 : vol.shape[1]//2 + 2,:]
# Prepare canvas
canvas = scene.SceneCanvas(keys='interactive', size=rec_size, show=not rec)
# Set up a viewbox to display the image with interactive pan/zoom
view = canvas.central_widget.add_view()
stepsize = .1 # step size inside the fragment shader : 0.1 is highest quality
# Modify the vispy `transclucent` volume OpenGL shader
NEW_TRANSLUCENT_SNIPPETS = dict(
before_loop="""vec4 integrated_color = vec4(0., 0., 0., 0.); """,
in_loop =("""color = $cmap(val);
float a1 = integrated_color.a;
// MODIFIED color.r -> val because we have no alpha info
float a2 = val * (1 - a1);
float alpha = max(a1 + a2, 0.001);
// Doesn't work.. GLSL optimizer bug?
//integrated_color = (integrated_color * a1 / alpha) +
// (color * a2 / alpha);
// This should be identical but does work correctly:
integrated_color *= a1 / alpha;
integrated_color += color * a2 / alpha;
integrated_color.a = alpha;
if( alpha > 0.99 ){
// stop integrating if the fragment becomes opaque
iter = nsteps;
}"""),
after_loop="""gl_FragColor = integrated_color;""",
)
class NewVolume(scene.visuals.Volume):
def __init__(self, *args, **kwargs):
self._rendering_methods['translucent'] = NEW_TRANSLUCENT_SNIPPETS
super().__init__(*args, **kwargs)
# Create the volume visuals, only one is visible
volume1 = NewVolume(vol, parent = view.scene,
cmap = 'nipy_spectral_r', # colormap
method = 'translucent', # shader method
relative_step_size = stepsize)
# rescale the volume to look like a `normal` mandelbrot set
volume1.transform = scene.MatrixTransform()
volume1.transform.scale([1,2/3,1])
volume1.transform.rotate(90, [0,1,0])
# translate the entire volume to be in the middle
if not slice:
volume1.transform.translate([0, 1/6 * vol.shape[1], vol.shape[0]])
else:
volume1.transform.translate([0, (2/3-.4)*vol.shape[1], vol.shape[0]])
cam = scene.cameras.TurntableCamera(parent=view.scene, fov=2.0,
name='Turntable')
# Start distance (empircally determined)
Ds = 5000 * vol.shape[0]/100
view.camera = cam
view.camera.elevation = 90
view.camera.azimuth = 0
view.camera.distance = Ds
@njit
def smooth(f, start, end):
""" Camera smoothing function; essentially an ease in / ease out
nonlinear interpolation
"""
f = 0.5*(np.cos(np.pi*(f-1)) + 1) # assumes x between 0-1
return linear_interp(f, 0,1, start, end)
def camera_move(camera, f, F):
# which keyframe we are on = phase
phase = f//F
# where we are between current keyframe and next (0-1) = fader
fader = (f % F)/F
# camera keyframes; assumes all lists equal length
keyframes = {
'elevation' : [ 0,
0,
90,
0,
-45,
],
'distance' : [ Ds/2,
Ds/2,
Ds/1.5,
Ds/1.5,
Ds/1.5,
],
'azimuth' : [ 0,
180,
180,
90,
0,
],
}
if phase >= len(keyframes['azimuth'])-1:
# we've reached the end of the keyframes (assumes all equal length)
if rec:
ffmpeg()
#print('phase:',phase,'fader:',fader)
for k in keyframes:
try:
val = smooth(fader, keyframes[k][phase],
keyframes[k][phase + 1])
setattr(view.camera, k, val)
except IndexError:
print('length mismatch for', k)
return len(keyframes['azimuth']) * F
def update(event):
global view, f, F, vol, volume1, canvas, rec, rec_prefix, project_name, \
play
start = time()
if not play:
if rec:
play = True
if play:
maxF = camera_move(view.camera, f, F)
f += 1
if rec:
image = canvas.render()
io.write_png(f'{rec_prefix}/{project_name}/{project_name}_{f}.png', image)
ETA = (time() - start) * (maxF-f) # (time / frame) * frames remaining
ETA = (ETA / 60) / 60 # seconds to hours
ETA = np.modf(ETA)
ETA = int(ETA[1]), int(round(ETA[0]*60))
ETA = str(ETA[0]) + ":" + str(ETA[1]).zfill(2)
print('saved frame', f, 'eta:', ETA)
# Implement axis connection with cam
@canvas.events.mouse_move.connect
def on_mouse_move(event):
pass
# Implement key presses
@canvas.events.key_press.connect
def on_key_press(event):
pass
if __name__ == '__main__':
print(f"{project_name} started rendering")
a = app.Timer(connect=update, start=True, app=canvas.app)
app.run()