-
Notifications
You must be signed in to change notification settings - Fork 0
/
icosahedron.py
441 lines (369 loc) · 17.6 KB
/
icosahedron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import numpy as np
from scipy.spatial import SphericalVoronoi
class Icosahedron:
def __init__(self, c=np.array([0, 0, 0]), rad=1, r=0, perm=np.arange(12)):
"""
Initialize a given icosahedron (i.e. the collection of its charts). The Icosahedron is initially oriented such
that one corner is north aligned and that all charts have the north pole in the top left corner (entry 0,0)
:param c: Center of the icosahedron
:param rad: Radius of the icosahedron (distance from center to corner).
:param r: Refinement level, starting at r=0 for standard icosahedron
"""
assert type(r) == int
assert 0 <= r < 10
self.center = np.array([0, 0, 0])
self.radius = 1
self.r_level = 0
# create initial charts - for construction use https://mathworld.wolfram.com/RegularIcosahedron.html
self.charts = np.zeros((5, 2, 3, 3))
self.corners = np.zeros_like(self.charts)
self.perm = perm
# helping vars taken from link above:
r_circ = 2 / 5 * np.sqrt(5)
h_circ = 1 / 5 * np.sqrt(5) # height (+ and -) of the two circles
vertices = np.array([[0, 0, 1],
[r_circ * np.cos(1 / 5 * (2 * np.pi)), r_circ *
np.sin(1 / 5 * (2 * np.pi)), h_circ],
[r_circ * np.cos(2 / 5 * (2 * np.pi)), r_circ *
np.sin(2 / 5 * (2 * np.pi)), h_circ],
[r_circ * np.cos(3 / 5 * (2 * np.pi)), r_circ *
np.sin(3 / 5 * (2 * np.pi)), h_circ],
[r_circ * np.cos(4 / 5 * (2 * np.pi)), r_circ *
np.sin(4 / 5 * (2 * np.pi)), h_circ],
[r_circ * np.cos(0 / 5 * (2 * np.pi)), r_circ *
np.sin(0 / 5 * (2 * np.pi)), h_circ],
[0, 0, -1],
[r_circ * np.cos((1 / 10 + 3 / 5) * (2 * np.pi)),
r_circ * np.sin((1 / 10 + 3 / 5) * (2 * np.pi)), -h_circ],
[r_circ * np.cos((1 / 10 + 4 / 5) * (2 * np.pi)),
r_circ * np.sin((1 / 10 + 4 / 5) * (2 * np.pi)), -h_circ],
[r_circ * np.cos((1 / 10 + 0 / 5) * (2 * np.pi)),
r_circ * np.sin((1 / 10 + 0 / 5) * (2 * np.pi)), -h_circ],
[r_circ * np.cos((1 / 10 + 1 / 5) * (2 * np.pi)),
r_circ * np.sin((1 / 10 + 1 / 5) * (2 * np.pi)), -h_circ],
[r_circ * np.cos((1 / 10 + 2 / 5) * (2 * np.pi)),
r_circ * np.sin((1 / 10 + 2 / 5) * (2 * np.pi)), -h_circ]])
# chart 1
self.charts[0, 0, 0, :] = vertices[self.perm[0]]
self.charts[0, 0, 1, :] = vertices[self.perm[1]]
self.charts[0, 0, 2, :] = vertices[self.perm[10]]
self.charts[0, 1, 0, :] = vertices[self.perm[5]]
self.charts[0, 1, 1, :] = vertices[self.perm[9]]
self.charts[0, 1, 2, :] = vertices[self.perm[6]]
# chart 2
self.charts[1, 0, 0, :] = vertices[self.perm[0]]
self.charts[1, 0, 1, :] = vertices[self.perm[5]]
self.charts[1, 0, 2, :] = vertices[self.perm[9]]
self.charts[1, 1, 0, :] = vertices[self.perm[4]]
self.charts[1, 1, 1, :] = vertices[self.perm[8]]
self.charts[1, 1, 2, :] = vertices[self.perm[6]]
# chart 3
self.charts[2, 0, 0, :] = vertices[self.perm[0]]
self.charts[2, 0, 1, :] = vertices[self.perm[4]]
self.charts[2, 0, 2, :] = vertices[self.perm[8]]
self.charts[2, 1, 0, :] = vertices[self.perm[3]]
self.charts[2, 1, 1, :] = vertices[self.perm[7]]
self.charts[2, 1, 2, :] = vertices[self.perm[6]]
# chart 4
self.charts[3, 0, 0, :] = vertices[self.perm[0]]
self.charts[3, 0, 1, :] = vertices[self.perm[3]]
self.charts[3, 0, 2, :] = vertices[self.perm[7]]
self.charts[3, 1, 0, :] = vertices[self.perm[2]]
self.charts[3, 1, 1, :] = vertices[self.perm[11]]
self.charts[3, 1, 2, :] = vertices[self.perm[6]]
# chart 5
self.charts[4, 0, 0, :] = vertices[self.perm[0]]
self.charts[4, 0, 1, :] = vertices[self.perm[2]]
self.charts[4, 0, 2, :] = vertices[self.perm[11]]
self.charts[4, 1, 0, :] = vertices[self.perm[1]]
self.charts[4, 1, 1, :] = vertices[self.perm[10]]
self.charts[4, 1, 2, :] = vertices[self.perm[6]]
self.rescale(rad)
self.recenter(c)
self.corners[...] = self.charts[...]
self.poles = np.array([vertices[self.perm[0]], vertices[self.perm[6]]])
for i in range(r):
self.charts = self.refine_charts()
def calculate_midpoints(self, points_1, points_2):
"""
Calculate midpoints of edges, where the edges are defined in one point by points_1,
and the other point by points_2.
Specify center and radius since there might have been a rotation/scaling/translation in the meantime.
"""
res = 1 / 2 * (points_2 + points_1)
res = self.radius * (res - self.center) / np.linalg.norm(res - self.center, axis=-1)[
..., np.newaxis] + self.center
return res
def refine_charts(self):
# make sure that the chart has the right shape (first two axis: position in grid, third axis: x,y,z coords)
assert len(self.charts.shape) == 4
# make sure that we use euclidean parametrization, eg. 3d coordinates
assert self.charts.shape[-1] == 3
# create a new chart of the correct shape
new_charts = np.zeros(
(5, 2 * self.charts.shape[1] - 1, 2 * self.charts.shape[2] - 1, 3))
# copy already created points
new_charts[:, ::2, ::2, :] = self.charts
# consider "horizontal" axes of the old chart
new_charts[:, ::2, 1::2, :] = self.calculate_midpoints(
self.charts[:, :, 1:, :], self.charts[:, :, :-1, :])
# consider "vertical" axes of the old chart
new_charts[:, 1::2, ::2, :] = self.calculate_midpoints(
self.charts[:, 1:, :, :], self.charts[:, :-1, :, :])
# consider "diagonal" axes of the old chart:
new_charts[:, 1::2, 1::2, :] = self.calculate_midpoints(
self.charts[:, :-1, 1:, :], self.charts[:, 1:, :-1, :])
self.r_level += 1
return new_charts
def n_points(self):
"""Geth number of points for a given refinement level"""
return 5 * 2 ** (2 * self.r_level + 1) + 2
def n_faces(self):
return 20 * 4 ** self.r_level
def n_edges(self):
return self.n_points + self.n_edges - 2
def spherical_to_cartesian(self, charts_spherical):
"""
convert spherical coordinates to euclidean coordinates.
Use answer to:
https://stackoverflow.com/questions/4116658/faster-numpy-cartesian-to-spherical-coordinate-conversion
"""
# takes list rthetaphi (single coord)
r = charts_spherical[..., 0]
theta = - (charts_spherical[..., 1] - 90) * (np.pi / 180)
phi = (charts_spherical[..., 2] - 180) * (np.pi / 180)
x = r * np.sin(theta) * np.cos(phi)
y = r * np.sin(theta) * np.sin(phi)
z = r * np.cos(theta)
return np.array([x, y, z]).transpose((1, 2, 3, 0))
def cartesian_to_spherical(self):
"""
convert cartesian coordinates to spherical coordinates
Use answer to:
https://stackoverflow.com/questions/4116658/faster-numpy-cartesian-to-spherical-coordinate-conversion
"""
# takes list xyz (single coord)
x = self.charts[..., 0]
y = self.charts[..., 1]
z = self.charts[..., 2]
r = np.sqrt(x * x + y * y + z * z)
# format in HadCM3: lat:(-90,90), lon(0,360)
theta = 90 - np.arccos(z / r) * 180 / np.pi # to degrees
phi = 180 + np.arctan2(y, x) * 180 / np.pi
# careful, this will only work if the shape is correct
return np.array([r, theta, phi]).transpose((1, 2, 3, 0))
def get_rotated_charts_cut(self, rot):
"""
Rotate the icosahedron (all points) with a given rotation matrix.
"""
return np.einsum('ij,chwj->chwi', rot, self.charts)[..., 1:, :-1, :]
def recenter(self, new_center):
"""
Translate the origin of the icosahedron
:param new_center: New center of the icosahedron (should be numpy array of shape (3,))
"""
assert len(new_center) == 3
assert len(new_center.shape) == 1
self.charts = self.charts - self.center + new_center
self.center = new_center
def rescale(self, new_radius):
"""
Rescale the radius of the icosahedron
:param new_radius: New radius (should be >0)
"""
assert new_radius > 0
self.charts = (self.charts - self.center) * \
(new_radius / self.radius) + self.center
self.radius = new_radius
def get_charts_cut(self):
"""In the network we don't use the whole charts defined here but remove one row and one column each.
Doing this gets rid of double-points and the points ad N and S."""
return self.charts[..., 1:, :-1, :]
def get_voronoi_regions_vertices(self, rot=None):
"""
Get the voronoi regions around each point in the charts. Useful for plotting
"""
poles = self.radius * self.poles + self.center
if rot is None:
points = self.get_charts_cut().reshape(-1, 3)
else:
points = self.get_rotated_charts_cut(rot).reshape(-1, 3)
poles = np.einsum('ij,kj->ki', rot, poles)
points = np.concatenate((poles, points), axis=0)
sv = SphericalVoronoi(points, self.radius, self.center)
sv.sort_vertices_of_regions()
# here the vertices are sorted in EITHER cw or ccw rotation. We NEED counterclockwise rotation
north = poles[0, ...]
counts = np.zeros(len(points))
for i, point in enumerate(points[2:]):
# +2 because we need to drop the poles
neighbors = sv.vertices[sv.regions[i + 2]]
# calculate normal vectors
x = np.cross(north, point)
y = np.cross(point, x)
# calculate coordinates in this basis
x_n = np.dot(neighbors, x)
y_n = np.dot(neighbors, y)
points_tangent = np.array([x_n, y_n])
points_tangent = points_tangent / \
np.linalg.norm(points_tangent, axis=0)[np.newaxis, ...]
angle = np.arctan2(
points_tangent[0, ...], points_tangent[1, ...]) * 360 / 2 / np.pi
rolled_angle = np.roll(angle, axis=0, shift=1)
diff = angle - rolled_angle
greater = diff > 0
counts[i + 2] = np.sum(greater, axis=-1)
regions_sorted = []
for i in range(len(sv.regions)):
if counts[i] == 1:
regions_sorted.append(sv.regions[i])
elif counts[i] > 1:
regions_sorted.append(np.flip(sv.regions[i], ))
else:
regions_sorted.append(sv.regions[i])
return regions_sorted[2:], sv.vertices
def rand_rotation_matrix(deflection=1.0, randnums=None):
"""
Creates a random rotation matrix.
deflection: the magnitude of the rotation. For 0, no rotation; for 1, competely random
rotation. Small deflection => small perturbation.
randnums: 3 random numbers in the range [0, 1]. If `None`, they will be auto-generated.
# http://blog.lostinmyterminal.com/python/2015/05/12/random-rotation-matrix.html
# From UGSCNN-Code
"""
if randnums is None:
randnums = np.random.uniform(size=(3,))
theta, phi, z = randnums
theta = theta * 2.0 * deflection * np.pi # Rotation about the pole (Z).
phi = phi * 2.0 * np.pi # For direction of pole deflection.
z = z * 2.0 * deflection # For magnitude of pole deflection.
# Compute a vector V used for distributing points over the sphere
# via the reflection I - V Transpose(V). This formulation of V
# will guarantee that if x[1] and x[2] are uniformly distributed,
# the reflected points will be uniform on the sphere. Note that V
# has length sqrt(2) to eliminate the 2 in the Householder matrix.
r = np.sqrt(z)
V = (
np.sin(phi) * r,
np.cos(phi) * r,
np.sqrt(2.0 - z)
)
st = np.sin(theta)
ct = np.cos(theta)
R = np.array(((ct, st, 0), (-st, ct, 0), (0, 0, 1)))
# Construct the rotation matrix ( V Transpose(V) - I ) R.
M = (np.outer(V, V) - np.eye(3)).dot(R)
return M
def rand_rotation_icosahedron():
"""
Rotate the icosahedron randomly by a rotational symmetry. This is implemented by applying a permutation
to the stored corner indices
"""
def antipode(index):
return (index + 6) % 12
# the neighborhood of each vertex in clockwise rotation:
neighbor_indices = np.array([[1, 2, 3, 4, 5],
[0, 5, 9, 10, 2],
[0, 1, 10, 11, 3],
[0, 2, 11, 7, 4],
[0, 3, 7, 8, 5],
[0, 4, 8, 9, 1],
[11, 10, 9, 8, 7],
[6, 8, 4, 3, 11],
[6, 9, 5, 4, 7],
[6, 10, 1, 5, 8],
[6, 11, 2, 1, 9],
[6, 7, 3, 2, 10]])
# decide ranomly which point becomes new north pole and in what rotation it neighborhood should be
new_NP = np.random.randint(12)
rot_state = np.random.randint(5)
NP_neighbors = np.roll(neighbor_indices[new_NP, ...], shift=rot_state)
new_perm = np.concatenate(
([new_NP], NP_neighbors, [antipode(new_NP)], antipode(NP_neighbors)))
return new_perm
def all_rotations_icosahedron():
"""
Get an array containing all possible rotations of the icosahedron.
"""
def antipode(index):
return (index + 6) % 12
# the neighborhood of each vertex in clockwise rotation:
neighbor_indices = np.array([[1, 2, 3, 4, 5],
[0, 5, 9, 10, 2],
[0, 1, 10, 11, 3],
[0, 2, 11, 7, 4],
[0, 3, 7, 8, 5],
[0, 4, 8, 9, 1],
[11, 10, 9, 8, 7],
[6, 8, 4, 3, 11],
[6, 9, 5, 4, 7],
[6, 10, 1, 5, 8],
[6, 11, 2, 1, 9],
[6, 7, 3, 2, 10]])
# decide ranomly which point becomes new north pole and in what rotation it neighborhood should be
all_perms = np.zeros((12*5, 12), dtype='int')
for new_NP in range(12):
for rot_state in range(5):
NP_neighbors = np.roll(
neighbor_indices[new_NP, ...], shift=rot_state)
all_perms[5*new_NP + rot_state] = np.concatenate(
([new_NP], NP_neighbors, [antipode(new_NP)], antipode(NP_neighbors)))
return all_perms
def plot_voronoi(data, regions, vertices, cmap=None, norm=None, elev=0, azim=0, figsize=(10, 10)):
""" Plot flattened data on the sphere using voronoi regions. Display data colorcoded"""
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import proj3d
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
# plotting
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(projection='3d')
if cmap is None:
cmap = plt.get_cmap("viridis")
if norm is None:
dmin = np.amin(data)
dmax = np.amax(data)
for i in range(len(regions)):
polygon = Poly3DCollection([vertices[regions[i]]], alpha=1.0)
if norm is None:
polygon.set_color(cmap(np.array((data[i]-dmin)/(dmax-dmin))))
else:
polygon.set_color(cmap(norm(data[i])))
ax.add_collection3d(polygon)
ax.axes.set_xlim3d(left=-1, right=1)
ax.axes.set_ylim3d(bottom=-1, top=1)
ax.axes.set_zlim3d(bottom=-1, top=1)
ax.view_init(elev, 180 + azim)
def plot_voronoi_charts(data, regions, vertices, label="", elev=0, azim=0, figsize=(10, 10)):
"""
Plot flattened data on the sphere using voronoi regions. Display data colorcoded. Split different maps.
Assume data has shape (n_charts, height, width)
"""
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import proj3d
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
assert len(data.shape) == 3
assert data.shape[0] == 5
# plotting
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(projection='3d')
dmin = np.amin(data)
dmax = np.amax(data)
cmaps = ["Reds", "Greens", "Blues", "Greys", "Purples"]
n_points_per_chart = data.shape[1] * data.shape[2]
for j in range(data.shape[0]):
cmap = plt.get_cmap(cmaps[j])
for i in range(n_points_per_chart):
reg = regions[j * n_points_per_chart + i]
polygon = Poly3DCollection([vertices[reg]], alpha=1.0)
if dmin != dmax:
c = (data.reshape(5, -1)[j, i] - dmin) / (dmax - dmin)
else:
c = data.reshape(5, -1)[j, i]
polygon.set_color(cmap(c))
ax.add_collection3d(polygon)
if label != "":
ax.set_title(label)
ax.axes.set_xlim3d(left=-1, right=1)
ax.axes.set_ylim3d(bottom=-1, top=1)
ax.axes.set_zlim3d(bottom=-1, top=1)
ax.view_init(elev, 180 + azim)