-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdl.js
77 lines (69 loc) · 2.22 KB
/
dl.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
console.log('dl.js uses the dl object loaded from https://deeplearnjs.org. Loading it now ...')
// load reference library:
var s = document.createElement('script')
s.src='https://unpkg.com/deeplearn'
//s.src='deeplearn.min.js' // alternatively use local copy
s.onload=function(){
console.log('... dl object loaded from '+s.src)
dlfun()
}
document.head.appendChild(s)
dlfun=function(){
// dl was loaded above
dlfun.math= new dl.NDArrayMathGPU()
dlfun.array=function(dt){
if(!Array.isArray(dt)){
return dl.Scalar.new(dt)
}else{
var dim =[dt.length]
var x1 = dt
if(!Array.isArray(x1[0])){
return dl.Array1D.new(x1)
}else{
dim.push(x1[0].length)
var x2 = []
x1.forEach(function(xi){
x2 = x2.concat(xi)
})
if(!Array.isArray(x2[0])){
return dl.Array2D.new(dim,x2)
}else{
dim.push(x2[0].length)
var x3 = []
x2.forEach(function(xi){
x3 = x3.concat(xi)
})
if(!Array.isArray(x3[0])){
return dl.Array3D.new(dim,x3)
}else{
dim.push(x2[0].length)
var x4 = []
x3.forEach(function(xi){
x4 = x4.concat(xi)
})
if(!Array.isArray(x4[0])){
return dl.Array4D.new(dim,x4)
}else{
error('this is not an array with fewer than 5 dimensions:', dt)
}
}
}
}
}
}
dlfun.rand=function(n){
n=n||10
var y=[]
for(var i=0;i<n;i++){
y[i]=Math.random()
}
return y
}
dlfun.centropy=function(p){ // crossentropy
return -p.map(function(pi){
return pi*Math.log(pi)+(1-pi)*Math.log(1-pi)
}).reduce(function(p1,p2){
return p1+p2
})/p.length
}
}