forked from coreqode/taichi_seg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshow_gui.py
227 lines (182 loc) · 7.15 KB
/
show_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import time
import warnings
import numpy as np
import torch
from datasets import dataset_dict
from datasets.ray_utils import get_ray_directions, get_rays
from einops import rearrange
from modules.networks import TaichiNGP
from modules.rendering import render
from modules.utils import load_ckpt, depth2img
from opt import get_opts
from scipy.spatial.transform import Rotation as R
warnings.filterwarnings("ignore")
import taichi as ti
@ti.kernel
def write_buffer(W: ti.i32, H: ti.i32, x: ti.types.ndarray(),
final_pixel: ti.template()):
for i, j in ti.ndrange(W, H):
for p in ti.static(range(3)):
final_pixel[i, j][p] = x[H - j, i, p]
class OrbitCamera:
def __init__(self, K, img_wh, poses, r):
self.K = K
self.W, self.H = img_wh
self.radius = r
self.center = np.zeros(3)
pose_np = poses.cpu().numpy()
# choose a pose as the initial rotation
self.rot = pose_np[0][:3, :3]
self.rotate_speed = 0.8
self.res_defalut = pose_np[0]
@property
def pose(self):
# first move camera to radius
res = np.eye(4)
res[2, 3] -= self.radius
# rotate
rot = np.eye(4)
rot[:3, :3] = self.rot
res = rot @ res
# translate
res[:3, 3] -= self.center
return res
def reset(self, pose=None):
self.rot = np.eye(3)
self.center = np.zeros(3)
self.radius = 2.0
if pose is not None:
self.rot = pose.cpu().numpy()[:3, :3]
def orbit(self, dx, dy):
rotvec_x = self.rot[:, 1] * np.radians(100 * self.rotate_speed * dx)
rotvec_y = self.rot[:, 0] * np.radians(-100 * self.rotate_speed * dy)
self.rot = R.from_rotvec(rotvec_y).as_matrix() @ \
R.from_rotvec(rotvec_x).as_matrix() @ \
self.rot
def scale(self, delta):
self.radius *= 1.1**(-delta)
def pan(self, dx, dy, dz=0):
self.center += 1e-4 * self.rot @ np.array([dx, dy, dz])
class NGPGUI:
def __init__(self, hparams, K, img_wh, poses, radius=2.5):
self.hparams = hparams
rgb_act = 'Sigmoid'
self.model = TaichiNGP(hparams, scale=hparams.scale,
rgb_act=rgb_act).cuda()
load_ckpt(self.model,
hparams.ckpt_path,
prefixes_to_ignore=['grid_coords', 'density_grid'])
self.poses = poses
self.cam = OrbitCamera(K, img_wh, poses, r=radius)
self.W, self.H = img_wh
self.render_buffer = ti.Vector.field(3,
dtype=float,
shape=(self.W, self.H))
# placeholders
self.dt = 0
self.mean_samples = 0
self.img_mode = 0
self.exposure = 0.2
def render_cam(self):
t = time.time()
directions = get_ray_directions(self.cam.H,
self.cam.W,
self.cam.K,
device='cuda')
rays_o, rays_d = get_rays(directions,
torch.cuda.FloatTensor(self.cam.pose))
# TODO: set these attributes by gui
if self.hparams.dataset_name in ['colmap', 'nerfpp']:
exp_step_factor = 1 / 256
else:
exp_step_factor = 0
results = render(
self.model, rays_o, rays_d, **{
'test_time': True,
'to_cpu': False,
'to_numpy': False,
'T_threshold': 1e-2,
'exposure': torch.cuda.FloatTensor([self.exposure]),
'max_samples': 100,
'exp_step_factor': exp_step_factor
})
rgb = rearrange(results["rgb"], "(h w) c -> h w c", h=self.H)
depth = rearrange(results["depth"], "(h w) -> h w", h=self.H)
# torch.cuda.synchronize()
self.dt = time.time() - t
self.mean_samples = results['total_samples'] / len(rays_o)
if self.img_mode == 0:
return rgb
assert self.img_mode == 1
return depth2img(depth.cpu().numpy()).astype(np.float32) / 255.0
def check_cam_rotate(self, window, last_orbit_x, last_orbit_y):
if window.is_pressed(ti.ui.RMB):
curr_mouse_x, curr_mouse_y = window.get_cursor_pos()
if last_orbit_x is None or last_orbit_y is None:
last_orbit_x, last_orbit_y = curr_mouse_x, curr_mouse_y
else:
dx = curr_mouse_x - last_orbit_x
dy = curr_mouse_y - last_orbit_y
self.cam.orbit(dx, -dy)
last_orbit_x, last_orbit_y = curr_mouse_x, curr_mouse_y
else:
last_orbit_x = None
last_orbit_y = None
return last_orbit_x, last_orbit_y
def check_key_press(self, window):
if window.is_pressed('w'):
self.cam.scale(0.2)
if window.is_pressed('s'):
self.cam.scale(-0.2)
if window.is_pressed('a'):
self.cam.pan(100, 0.)
if window.is_pressed('d'):
self.cam.pan(-100, 0.)
if window.is_pressed('e'):
self.cam.pan(0., -100)
if window.is_pressed('q'):
self.cam.pan(0., 100)
def render(self):
window = ti.ui.Window(
'taichi_ngp',
(self.W, self.H),
)
canvas = window.get_canvas()
gui = window.get_gui()
# GUI controls variables
last_orbit_x = None
last_orbit_y = None
view_id = 0
last_view_id = 0
views_size = self.poses.shape[0] - 1
while window.running:
self.check_key_press(window)
last_orbit_x, last_orbit_y = self.check_cam_rotate(
window, last_orbit_x, last_orbit_y)
with gui.sub_window("Control", 0.01, 0.01, 0.4, 0.2) as w:
self.cam.rotate_speed = w.slider_float('rotate speed',
self.cam.rotate_speed,
0.1, 1.)
self.exposure = w.slider_float('exposure', self.exposure,
1 / 60, 32)
self.img_mode = w.checkbox("show depth", self.img_mode)
view_id = w.slider_int('train view', view_id, 0, views_size)
if last_view_id != view_id:
last_view_id = view_id
self.cam.reset(self.poses[view_id])
w.text(f'samples per rays: {self.mean_samples:.2f} s/r')
w.text(f'render times: {1000*self.dt:.2f} ms')
ngp_buffer = self.render_cam()
write_buffer(self.W, self.H, ngp_buffer, self.render_buffer)
canvas.set_image(self.render_buffer)
window.show()
if __name__ == "__main__":
ti.init(arch=ti.cuda, device_memory_GB=4)
hparams = get_opts()
kwargs = {
'root_dir': hparams.root_dir,
'downsample': hparams.downsample,
'read_meta': True
}
dataset = dataset_dict[hparams.dataset_name](**kwargs)
NGPGUI(hparams, dataset.K, dataset.img_wh, dataset.poses).render()