forked from petercorke/machinevision-toolbox-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamcalt.m
194 lines (170 loc) · 4.36 KB
/
camcalt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
%CAMCALT Camera calibration using Tsai's two-stage method.
%
% This method works when the calibration target comprises coplanar points.
%
% [Tcam, f, k1]] = CAMCALT(D, PAR)
%
% Compute a 3x4 camera calibration matrix from calibration data
% using the method of Tsai.
%
% D is camera calibration data with rows of the form [x y z X Y] where
% (x,y,z) is the world coordinate, and (X,Y) is the image coordinate
%
% PAR is a vector of apriori knowledge:
% Ncx
% Nfx
% dx
% dy
% Cx principal point, framestore coordinate of optical
% Cy axis.
%
% The output is an estimate of the camera's pose, the focal length, and
% a lens radial distortion coefficient k1.
%
% REF: "A versatile camera calibration technique for high-accuracy 3D machine
% vision metrology using off-the-shelf TV cameras and lens"
% R.Y. Tsai, IEEE Trans R&A RA-3, No.4, Aug 1987, pp 323-344.
%
% SEE ALSO: CAMCALP, CAMCALD, INVCAMCAL, CAMERA
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Machine Vision Toolbox for Matlab (MVTB).
%
% MVTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% MVTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with MVTB. If not, see <http://www.gnu.org/licenses/>.
function [Tcam, f, k1] = camcalt(camcal, par)
%
% manifest constants of camera sensor geometry and digitizer
%
Ncx = par(1);
Nfx = par(2);
dx = par(3);
dy = par(4);
Cx = par(5);
Cy = par(6);
%
% derived constants
%
sx = Ncx/Nfx;
dxp = sx * dx;
X = Xf - Cx;
Y = Yf - Cy;
Xd = dx * X;
Yd = dy * Y;
z = [Yd.*xw Yd.*yw Yd -Xd.*xw -Xd.*yw] \ Xd;
r1p = z(1);
r2p = z(2);
r4p = z(4);
r5p = z(5);
Txp = z(3);
C = [r1p r2p; r4p r5p];
if rank(C) == 2,
Sr = r1p^2 + r2p^2 + r4p^2 + r5p^2;
Ty2 = (Sr - sqrt(Sr^2 - 4*(r1p*r5p - r4p*r2p)^2)) / (2*(r1p*r5p - r4p*r2p)^2);
else
disp('unusual case')
z = C(abs(C) > 0);
Ty2 = 1.0 / (z(1)^2 + z(2)^2);
end
Ty = sqrt(Ty2);
%
% determine the sign of Ty
%
%
% find the calib point furthest from the center
%
[ymax i] = max(Xd.^2 + Yd.^2);
r1 = r1p*Ty;
r2 = r2p*Ty;
r4 = r4p*Ty;
r5 = r5p*Ty;
Tx = Txp*Ty;
x = r1*xw(i) + r2*yw(i) + Tx;
y = r4*xw(i) + r5*yw(i) + Ty;
if (sign(x) == sign(Xf(i))) & (sign(y) == sign(Yf(i))),
Ty = Ty;
else
disp('sign of Ty reversed');
Ty = -Ty;
end
%
% determine the 3D rotation matrix R
%
r1 = r1p*Ty;
r2 = r2p*Ty;
r4 = r4p*Ty;
r5 = r5p*Ty;
Tx = Txp*Ty;
s = -sign(r1*r4 + r2*r5);
R = [r1 r2 sqrt(1-r1^2-r2^2); r4 r5 s*sqrt(1-r4^2-r5^2)];
R = [R(1:2,:); cross(R(1,:)', R(2,:)')];
r7 = R(3,1);
r8 = R(3,2);
r9 = R(3,3);
y = r4*xw+r5*yw+Ty;
w = r7*xw+r8*yw;
z = [y -dy*Y] \ [dy*(w.*Y)];
f = z(1);
if f < 0,
disp('f is negative');
R(1,3) = -R(1,3);
R(2,3) = -R(2,3);
R(3,1) = -R(3,1);
R(3,2) = -R(3,2);
end
r6 = R(2,3);
%
% solve non-linear equation (8b) by minimization to find f, k1, Tz
%
Tz = z(2);
params = [r4 r5 r6 r7 r8 r9 dx dy sx Ty];
z0 = [z; 0]; % add initial guess for k1
z = fmins(@eightb, z0, 0,[],params, xw, yw, zw, Xf-Cx, Yf-Cy);
f = z(1);
Tz = z(2);
k1 = z(3);
Tcam = [R [Tx Ty Tz]'; 0 0 0 1]; % the camera transform
% optimization target function used by camcalt
% Copyright (c) Peter Corke, 1999 Machine Vision Toolbox for Matlab
% $Header: /home/autom/pic/cvsroot/image-toolbox/camcalt.m,v 1.2 2005/10/20 11:24:49 pic Exp $
% $Log: camcalt.m,v $
% Revision 1.2 2005/10/20 11:24:49 pic
% Embed optimization function in file.
%
% Revision 1.1.1.1 2002/05/26 10:50:20 pic
% initial import
%
function e = eightb(z, params, xw, yw, zw, X, Y)
%
% unpack the unknowns
%
f = z(1);
Tz = z(2);
k1 = z(3);
%
% unpack the scalar parameters
%
r4 = params(1);
r5 = params(2);
r6 = params(3);
r7 = params(4);
r8 = params(5);
r9 = params(6);
dx = params(7);
dy = params(8);
sx = params(9);
Ty = params(10);
rsq = (dx*X).^2 + (dy*Y).^2;
res = (dy*Y).*(1+k1*rsq).*(r7*xw+r8*yw+r9*zw+Tz) - f*(r4*xw+r5*yw+r6*zw+Ty);
e = norm(res, 2);
% fprintf('%e [%f %e %e]\n', norm(res),f*1000,Tz*1000,k1);