-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprepare_embedding.py
70 lines (58 loc) · 2.52 KB
/
prepare_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
import torch
from torch.utils.data import DataLoader
import time
import os
import sys
from args import get_args
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
from sentence_transformers import SentenceTransformer
from models.clip_utils import CLIP
import json
import copy
from tqdm import tqdm
import shutil
dir_path = os.path.dirname(os.path.realpath(__file__))
parent_dir_path = os.path.abspath(os.path.join(dir_path, os.pardir))
sys.path.insert(0, parent_dir_path)
from utils.log import Logger
from src.transformers import BartForTextInfill, BartTokenizer
from language_models.language_model import LanguageModel
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from dataset.ImgDataset import Imgdata, collate_img
from dataset.ImgDataset_img_return import Imgdata_img_return, collate_img_img_return
from utils.some_utils import set_seed, update_args_logger
from utils.detect_utils import detect_keyword
from utils.generate_utils_ import Get_shuffle_score, filter_text
if __name__ == "__main__":
args = get_args()
input_text_corpus_path = args.memory_path
set_seed(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cpu_device = torch.device("cpu")
vl_model = CLIP(args.clip_model)
vl_model = vl_model.to(device)
sim_func = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
wte_model = SentenceTransformer(args.wte_model_path)
clip_embed_list = []
wte_embed_list = []
with open(input_text_corpus_path,'r') as json_f:
textual_data = json.load(json_f)
batch_size = 128
for idx in tqdm(range(0,len(textual_data),batch_size)):
text_list = textual_data[idx:idx+batch_size]
clip_embeds = vl_model.compute_text_representation(text_list).detach().cpu()
clip_embed_list.append(clip_embeds)
wte_embeds = wte_model.encode(text_list, convert_to_tensor=True, normalize_embeddings=True).detach().cpu()
wte_embed_list.append(wte_embeds)
# if idx >= 200000:
# break
all_clip_embeds = torch.cat(clip_embed_list)
all_wte_embeds = torch.cat(wte_embed_list)
save_path = f"data/memory/{args.memory_id}"
if os.path.exists(save_path) == False:
os.makedirs(save_path)
shutil.copy(args.memory_path, os.path.join(save_path, "memory_captions.json"))
torch.save(all_clip_embeds, os.path.join(save_path, "memory_clip_embeddings.pt"))
torch.save(all_wte_embeds, os.path.join(save_path, "memory_wte_embeddings.pt"))