-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtanh.py
50 lines (33 loc) · 1.24 KB
/
tanh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from microjax import grad, exp
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + exp(-x))
def tanh(x):
return 2 * sigmoid(2 * x) - 1
def forward(func, vec):
return [func(x) for x in vec]
x = [i / 100 for i in range(-500, 500)]
primals = forward(tanh, x)
# first derivative
f_prime = forward(grad(tanh), x)
# # higher order derivatives
f_double_prime = forward(grad(grad(tanh)), x)
f_triple_prime = forward(grad(grad(grad(tanh))), x)
f_fourth_prime = forward(grad(grad(grad(grad(tanh)))), x)
# Plotting with high resolution
plt.figure(figsize=(12, 8))
plt.style.use("dark_background") # Set the style to dark background
plt.plot(x, primals, label="f(x) = tanh(x)", linewidth=2)
plt.plot(x, f_prime, label="f'(x)", linewidth=2)
plt.plot(x, f_double_prime, label="f''(x)", linewidth=2)
plt.plot(x, f_triple_prime, label="f'''(x)", linewidth=2)
plt.plot(x, f_fourth_prime, label="f''''(x)", linewidth=2)
plt.title("Plot of tanh(x) and its First Four Derivatives", fontsize=22, weight="bold")
plt.xlabel("x", fontsize=18)
plt.ylabel("Function value", fontsize=18)
plt.legend(fontsize=16)
plt.grid(True, linestyle="--", alpha=0.15) # Reduced grid visibility
plt.tight_layout()
plt.box(False)
plt.savefig("grad_plot.png")
plt.show()