forked from GOATmessi8/ASFF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
executable file
·136 lines (113 loc) · 4.38 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from utils.utils import *
from dataset.vocdataset import VOC_CLASSES
from dataset.cocodataset import COCO_CLASSES
from dataset.data_augment import ValTransform
from utils.vis_utils import vis
import os
import sys
import argparse
import yaml
import cv2
cv2.setNumThreads(0)
import torch
from torch.autograd import Variable
import time
######## unlimit the resource in some dockers or cloud machines #######
#import resource
#rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
#resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='config/yolov3_baseline.cfg',
help='config file. see readme')
parser.add_argument('-d', '--dataset', type=str, default='COCO')
parser.add_argument('-i', '--img', type=str, default='example/test.jpg',)
parser.add_argument('-c', '--checkpoint', type=str,
help='pytorch checkpoint file path')
parser.add_argument('-s', '--test_size', type=int, default=416)
parser.add_argument('--half', dest='half', action='store_true', default=False,
help='FP16 training')
parser.add_argument('--rfb', dest='rfb', action='store_true', default=False,
help='Use rfb block')
parser.add_argument('--asff', dest='asff', action='store_true', default=False,
help='Use ASFF module for yolov3')
parser.add_argument('--use_cuda', type=bool, default=True)
return parser.parse_args()
def demo():
"""
YOLOv3 demo. See README for details.
"""
args = parse_args()
print("Setting Arguments.. : ", args)
cuda = torch.cuda.is_available() and args.use_cuda
# Parse config settings
with open(args.cfg, 'r') as f:
cfg = yaml.safe_load(f)
print("successfully loaded config file: ", cfg)
backbone=cfg['MODEL']['BACKBONE']
test_size = (args.test_size,args.test_size)
if args.dataset == 'COCO':
class_names = COCO_CLASSES
num_class=80
elif args.dataset == 'VOC':
class_names = VOC_CLASSES
num_class=20
else:
raise Exception("Only support COCO or VOC model now!")
# Initiate model
if args.asff:
if backbone == 'mobile':
from models.yolov3_mobilev2 import YOLOv3
print("For mobilenet, we currently don't support dropblock, rfb and FeatureAdaption")
else:
from models.yolov3_asff import YOLOv3
print('Training YOLOv3 with ASFF!')
model = YOLOv3(num_classes = num_class, rfb=args.rfb, asff=args.asff)
else:
if backbone == 'mobile':
from models.yolov3_mobilev2 import YOLOv3
else:
from models.yolov3_baseline import YOLOv3
print('Training YOLOv3 strong baseline!')
model = YOLOv3(num_classes = num_class, rfb=args.rfb)
if args.checkpoint:
print("loading pytorch ckpt...", args.checkpoint)
cpu_device = torch.device("cpu")
ckpt = torch.load(args.checkpoint, map_location=cpu_device)
#model.load_state_dict(ckpt,strict=False)
model.load_state_dict(ckpt)
if cuda:
print("using cuda")
torch.backends.cudnn.benchmark = True
device = torch.device("cuda")
model = model.to(device)
if args.half:
model = model.half()
model = model.eval()
dtype = torch.float16 if args.half else torch.float32
#load img
transform = ValTransform(rgb_means=(0.485, 0.456, 0.406), std=(0.229,0.224,0.225))
im = cv2.imread(args.img)
height, width, _ = im.shape
ori_im = im.copy()
im_input, _ = transform(im, None, test_size)
if cuda:
im_input = im_input.to(device)
im_input = Variable(im_input.type(dtype).unsqueeze(0))
outputs= model(im_input)
outputs = postprocess(outputs, num_class, 0.01, 0.65)
outputs = outputs[0].cpu().data
bboxes = outputs[:, 0:4]
bboxes[:, 0::2] *= width / test_size[0]
bboxes[:, 1::2] *= height / test_size[1]
bboxes[:, 2] = bboxes[:,2] - bboxes[:,0]
bboxes[:, 3] = bboxes[:,3] - bboxes[:,1]
cls = outputs[:, 6]
scores = outputs[:, 4]* outputs[:,5]
pred_im=vis(ori_im, bboxes.numpy(), scores.numpy(), cls.numpy(), conf=0.6, class_names=class_names)
cv2.imshow('Detection', pred_im)
cv2.waitKey(0)
cv2.destroyAllWindows()
sys.exit(0)
if __name__ == '__main__':
demo()