forked from MasterprojectRK/Hi-cGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhicGAN.py
520 lines (465 loc) · 27.8 KB
/
hicGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Conv1D, BatchNormalization, LeakyReLU, Conv2DTranspose, Dropout, ReLU, Flatten, Dense
import numpy as np
import os
import matplotlib.pyplot as plt
from tqdm import tqdm
import utils
#implementation of adapted pix2pix cGAN
#modified from tensorflow tutorial https://www.tensorflow.org/tutorials/generative/pix
#also see: https://machinelearningmastery.com/how-to-implement-pix2pix-gan-models-from-scratch-with-keras/
class HiCGAN():
def __init__(self, log_dir: str,
number_factors: int,
loss_weight_pixel: float = 100, #factor for L1/L2 loss, like Isola et al. 2017
loss_weight_adversarial: float = 1.0, #factor for adversarial loss in generator
loss_weight_discriminator: float = 0.5, #factor for disc loss, like Isola et al. 2017
loss_weight_tv: float = 1e-10, #factor for TV loss
loss_type_pixel: str = "L1", #type of per-pixel error (L1, L2)
input_size: int = 256,
plot_frequency: int = 20,
plot_type: str = "png",
learning_rate_generator: float = 2e-5,
learning_rate_discriminator: float = 1e-6,
adam_beta_1: float = 0.5,
pretrained_model_path: str = "",
embedding_model_type: str = "CNN"):
super().__init__()
self.OUTPUT_CHANNELS = 1
self.INPUT_CHANNELS = 1
self.input_size = 256
if input_size in [64,128,256]:
self.input_size = input_size
self.number_factors = number_factors
self.loss_weight_pixel = loss_weight_pixel
self.loss_weight_discriminator = loss_weight_discriminator
self.loss_weight_adversarial = loss_weight_adversarial
self.loss_weight_tv = loss_weight_tv
self.loss_type_pixel = loss_type_pixel
self.generator_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate_generator, beta_1=adam_beta_1, name="Adam_Generator")
self.discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate_discriminator, beta_1=adam_beta_1, name="Adam_Discriminator")
#choose the desired embedding network: DNN (like Farre et al.) or CNN
if embedding_model_type not in ["DNN", "CNN", "mixed"]:
msg = "Embedding {:s} not supported".format(embedding_model_type)
raise NotImplementedError(msg)
if embedding_model_type == "DNN":
self.generator_embedding = self.dnn_embedding(pretrained_model_path=pretrained_model_path)
self.discriminator_embedding = self.dnn_embedding(pretrained_model_path=pretrained_model_path)
elif embedding_model_type == "mixed":
self.generator_embedding = self.dnn_embedding(pretrained_model_path=pretrained_model_path)
self.discriminator_embedding = self.cnn_embedding()
else:
self.generator_embedding = self.cnn_embedding()
self.discriminator_embedding = self.cnn_embedding()
self.generator = self.Generator()
self.discriminator = self.Discriminator()
self.log_dir=log_dir
self.checkpoint_dir = os.path.join(self.log_dir, 'training_checkpoints')
self.checkpoint_prefix = os.path.join(self.checkpoint_dir, "ckpt")
self.checkpoint = tf.train.Checkpoint(generator_optimizer=self.generator_optimizer,
discriminator_optimizer=self.discriminator_optimizer,
generator=self.generator,
discriminator=self.discriminator)
self.plot_type = plot_type
if self.plot_type not in ["png", "pdf", "svg"]:
self.plot_type = "png"
print("plot type {:s} unsupported, changed to png".format(plot_type))
self.progress_plot_name = os.path.join(self.log_dir, "lossOverEpochs.{:s}".format(self.plot_type))
self.progress_plot_frequency = plot_frequency
self.example_plot_frequency = 5
#losses per epochs
self.__gen_train_loss_epochs = []
self.__disc_train_loss_true_epochs = []
self.__disc_train_loss_fake_epochs = []
self.__gen_val_loss_epochs = []
self.__disc_val_loss_epochs = []
#losses per batch
self.__gen_train_loss_batches = []
self.__disc_train_loss_true_batches = []
self.__disc_train_loss_fake_batches = []
self.__gen_val_loss_batches = []
self.__disc_val_loss_batches = []
self.__epoch_counter = 0
self.__batch_counter = 0
def cnn_embedding(self, nr_filters_list=[1024,512,512,256,256,128,128,64], kernel_width_list=[4,4,4,4,4,4,4,4], apply_dropout: bool = False):
inputs = tf.keras.layers.Input(shape=(3*self.input_size, self.number_factors))
#add 1D convolutions
x = inputs
for i, (nr_filters, kernelWidth) in enumerate(zip(nr_filters_list, kernel_width_list)):
convParamDict = dict()
convParamDict["name"] = "conv1D_" + str(i + 1)
convParamDict["filters"] = nr_filters
convParamDict["kernel_size"] = kernelWidth
convParamDict["data_format"]="channels_last"
convParamDict["kernel_regularizer"]=tf.keras.regularizers.l2(0.01)
if kernelWidth > 1:
convParamDict["padding"] = "same"
x = Conv1D(**convParamDict)(x)
x = BatchNormalization()(x)
if apply_dropout:
x = Dropout(0.5)(x)
x = tf.keras.layers.LeakyReLU(alpha=0.2)(x)
#make the shape of a square matrix
x = Conv1D(filters=self.input_size,
strides=3,
kernel_size=4,
data_format="channels_last",
activation="sigmoid",
padding="same", name="conv1D_final")(x)
#ensure the matrix is symmetric, i.e. x = transpose(x)
x_T = tf.keras.layers.Permute((2,1))(x) #this is the matrix transpose
x = tf.keras.layers.Add()([x, x_T])
x = tf.keras.layers.Lambda(lambda z: 0.5*z)(x) #add transpose and divide by 2
#reshape the matrix into a 2D grayscale image
x = tf.keras.layers.Reshape((self.input_size,self.input_size,self.INPUT_CHANNELS))(x)
model = tf.keras.Model(inputs=inputs, outputs=x, name="CNN-embedding")
#model.build(input_shape=(3*self.INPUT_SIZE, self.NR_FACTORS))
#model.summary()
return model
def dnn_embedding(self, pretrained_model_path : str = ""):
inputs = tf.keras.layers.Input(shape=(3*self.input_size, self.number_factors))
x = Conv1D(filters=1,
kernel_size=1,
strides=1,
padding="valid",
data_format="channels_last",
activation="sigmoid")(inputs)
x = Flatten(name="flatten_1")(x)
for i, nr_neurons in enumerate([460,881,1690]):
layerName = "dense_" + str(i+1)
x = Dense(nr_neurons, activation="relu", kernel_regularizer="l2", name=layerName)(x)
layerName = "dropout_" + str(i+1)
x = Dropout(0.1, name=layerName)(x)
nr_output_neurons = (self.input_size * (self.input_size + 1)) // 2
x = Dense(nr_output_neurons, activation="relu",kernel_regularizer="l2", name="dense_out")(x)
dnn_model = tf.keras.Model(inputs=inputs, outputs=x)
if pretrained_model_path != "":
try:
dnn_model.load_weights(pretrained_model_path)
print("model weights successfully loaded")
except Exception as e:
msg = str(e)
msg += "\nCould not load the weights of pre-trained model"
print(msg)
inputs2 = tf.keras.layers.Input(shape=(3*self.input_size, self.number_factors))
x = dnn_model(inputs2)
#place the upper triangular part from dnn model into full matrix
x = CustomReshapeLayer(self.input_size)(x)
#symmetrize the output
x_T = tf.keras.layers.Permute((2,1))(x)
diag = tf.keras.layers.Lambda(lambda z: -1*tf.linalg.band_part(z, 0, 0))(x)
x = tf.keras.layers.Add()([x, x_T, diag])
out = tf.keras.layers.Reshape((self.input_size, self.input_size, self.INPUT_CHANNELS))(x)
dnn_embedding = tf.keras.Model(inputs=inputs2, outputs=out, name="DNN-embedding")
return dnn_embedding
@staticmethod
def downsample(filters, size, apply_batchnorm=True):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(Conv2D(filters, size, strides=2, padding='same',
kernel_initializer=initializer, use_bias=False))
if apply_batchnorm:
result.add(BatchNormalization())
result.add(LeakyReLU(alpha=0.2))
return result
@staticmethod
def upsample(filters, size, apply_dropout=False):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(Conv2DTranspose(filters, size, strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False))
result.add(BatchNormalization())
if apply_dropout:
result.add(Dropout(0.5))
result.add(ReLU())
return result
def Generator(self):
inputs = tf.keras.layers.Input(shape=[3*self.input_size,self.number_factors], name="factorData")
twoD_conversion = self.generator_embedding
#the downsampling part of the network, defined for 256x256 images
down_stack = [
HiCGAN.downsample(64, 4, apply_batchnorm=False), # (bs, 128, 128, 64)
HiCGAN.downsample(128, 4), # (bs, 64, 64, 128)
HiCGAN.downsample(256, 4), # (bs, 32, 32, 256)
HiCGAN.downsample(512, 4), # (bs, 16, 16, 512)
HiCGAN.downsample(512, 4), # (bs, 8, 8, 512)
HiCGAN.downsample(512, 4), # (bs, 4, 4, 512)
HiCGAN.downsample(512, 4), # (bs, 2, 2, 512)
HiCGAN.downsample(512, 4, apply_batchnorm=False), # (bs, 1, 1, 512)
]
#if the input images are smaller, leave out some layers accordingly
if self.input_size < 256:
down_stack = down_stack[:-2] + down_stack[-1:]
if self.input_size < 128:
down_stack = down_stack[:-2] + down_stack[-1:]
#the upsampling portion of the generator, designed for 256x256 images
up_stack = [
HiCGAN.upsample(512, 4, apply_dropout=True), # (bs, 2, 2, 1024)
HiCGAN.upsample(512, 4, apply_dropout=True), # (bs, 4, 4, 1024)
HiCGAN.upsample(512, 4, apply_dropout=True), # (bs, 8, 8, 1024)
HiCGAN.upsample(512, 4), # (bs, 16, 16, 1024)
HiCGAN.upsample(256, 4), # (bs, 32, 32, 512)
HiCGAN.upsample(128, 4), # (bs, 64, 64, 256)
HiCGAN.upsample(64, 4), # (bs, 128, 128, 128)
]
#for smaller images, take layers away, otherwise downsampling won't work
if self.input_size < 256:
up_stack = up_stack[:2] + up_stack[3:]
if self.input_size < 128:
up_stack = up_stack[:2] + up_stack[3:]
initializer = tf.random_normal_initializer(0., 0.02)
last = tf.keras.layers.Conv2DTranspose(self.OUTPUT_CHANNELS, 4,
strides=2,
padding='same',
kernel_initializer=initializer) # (bs, 256, 256, 3)
x = inputs
x = twoD_conversion(x)
# Downsampling through the model
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip in zip(up_stack, skips):
x = up(x)
x = tf.keras.layers.Concatenate()([x, skip])
x = last(x)
#enforce symmetry
x_T = tf.keras.layers.Permute((2,1,3))(x)
x = tf.keras.layers.Add()([x, x_T])
x = tf.keras.layers.Lambda(lambda z: 0.5*z)(x)
x = tf.keras.layers.Activation("sigmoid")(x)
return tf.keras.Model(inputs=inputs, outputs=x, name="Generator")
def generator_loss(self, disc_generated_output, gen_output, target):
advers_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(disc_generated_output), logits=disc_generated_output) )
# mean squared error or mean absolute error
if self.loss_type_pixel == "L1":
pixel_loss = tf.reduce_mean(tf.abs(target - gen_output))
else:
pixel_loss = tf.reduce_mean(tf.square(target - gen_output))
tv_loss = tf.reduce_mean(tf.image.total_variation(gen_output))
total_gen_loss = self.loss_weight_pixel * pixel_loss + self.loss_weight_adversarial * advers_loss + self.loss_weight_tv * tv_loss
return total_gen_loss, advers_loss, pixel_loss
def Discriminator(self):
initializer = tf.random_normal_initializer(0., 0.02)
inp = tf.keras.layers.Input(shape=[3*self.input_size, self.number_factors], name='input_image')
tar = tf.keras.layers.Input(shape=[self.input_size, self.input_size, self.OUTPUT_CHANNELS], name='target_image')
embedding = self.discriminator_embedding
#Patch-GAN (Isola et al.)
d = embedding(inp)
d = tf.keras.layers.Concatenate()([d, tar])
if self.input_size > 64:
#downsample and symmetrize 1
d = HiCGAN.downsample(64, 4, False)(d) # (bs, inp.size/2, inp.size/2, 64)
d_T = tf.keras.layers.Permute((2,1,3))(d)
d = tf.keras.layers.Add()([d, d_T])
d = tf.keras.layers.Lambda(lambda z: 0.5*z)(d)
#downsample and symmetrize 2
d = HiCGAN.downsample(128, 4)(d)# (bs, inp.size/4, inp.size/4, 128)
d_T = tf.keras.layers.Permute((2,1,3))(d)
d = tf.keras.layers.Add()([d, d_T])
d = tf.keras.layers.Lambda(lambda z: 0.5*z)(d)
else:
#downsample and symmetrize 3
d = HiCGAN.downsample(256, 4)(d)
d_T = tf.keras.layers.Permute((2,1,3))(d)
d = tf.keras.layers.Add()([d, d_T])
d = tf.keras.layers.Lambda(lambda z: 0.5*z)(d)
#downsample and symmetrize 4
d = HiCGAN.downsample(256, 4)(d) # (bs, inp.size/8, inp.size/8, 256)
d_T = tf.keras.layers.Permute((2,1,3))(d)
d = tf.keras.layers.Add()([d, d_T])
d = tf.keras.layers.Lambda(lambda z: 0.5*z)(d)
d = Conv2D(512, 4, strides=1, padding="same", kernel_initializer=initializer)(d) #(bs, inp.size/8, inp.size/8, 512)
d_T = tf.keras.layers.Permute((2,1,3))(d)
d = tf.keras.layers.Add()([d, d_T])
d = tf.keras.layers.Lambda(lambda z: 0.5*z)(d)
d = BatchNormalization()(d)
d = LeakyReLU(alpha=0.2)(d)
d = Conv2D(1, 4, strides=1, padding="same",
kernel_initializer=initializer)(d) #(bs, inp.size/8, inp.size/8, 1)
d_T = tf.keras.layers.Permute((2,1,3))(d)
d = tf.keras.layers.Add()([d, d_T])
d = tf.keras.layers.Lambda(lambda z: 0.5*z)(d)
#d = tf.keras.layers.Activation("sigmoid")(d) #sigmoid will be done in the loss function itself
return tf.keras.Model(inputs=[inp, tar], outputs=d, name="Discriminator")
def discriminator_loss(self, disc_real_output, disc_generated_output):
real_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(disc_real_output), logits=disc_real_output) )
generated_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(disc_generated_output), logits=disc_generated_output) )
total_disc_loss = self.loss_weight_discriminator * (real_loss + generated_loss)
return total_disc_loss, real_loss, generated_loss
@tf.function
def train_step(self, input_image, target, epoch):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = self.generator(input_image, training=True)
disc_real_output = self.discriminator([input_image, target], training=True)
disc_generated_output = self.discriminator([input_image, gen_output], training=True)
gen_total_loss, _, _ = self.generator_loss(disc_generated_output, gen_output, target)
disc_loss, disc_real_loss, disc_gen_loss = self.discriminator_loss(disc_real_output, disc_generated_output)
generator_gradients = gen_tape.gradient(gen_total_loss,
self.generator.trainable_variables)
discriminator_gradients = disc_tape.gradient(disc_loss,
self.discriminator.trainable_variables)
self.generator_optimizer.apply_gradients(zip(generator_gradients,
self.generator.trainable_variables))
self.discriminator_optimizer.apply_gradients(zip(discriminator_gradients,
self.discriminator.trainable_variables))
return gen_total_loss, disc_loss, disc_real_loss, disc_gen_loss
@tf.function
def validationStep(self, input_image, target):
gen_output = self.generator(input_image, training=True)
disc_real_output = self.discriminator([input_image, target], training=True)
disc_generated_output = self.discriminator([input_image, gen_output], training=True)
gen_total_loss, _, _ = self.generator_loss(disc_generated_output, gen_output, target)
disc_loss, _, _ = self.discriminator_loss(disc_real_output, disc_generated_output)
return gen_total_loss, disc_loss
def generate_images(self, model, test_input, tar, epoch: int):
prediction = model(test_input, training=True)
pred_mse = tf.reduce_mean(tf.square( tar["out_matrixData"][0], prediction[0] ))
figname = "testpred_epoch_{:05d}.png".format(epoch)
figname = os.path.join(self.log_dir, figname)
display_list = [test_input["factorData"][0], tar["out_matrixData"][0], prediction[0]]
titleList = ['Input Image', 'Ground Truth', 'Predicted Image (MSE: {:.5f})'.format(pred_mse)]
fig1, axs1 = plt.subplots(1,len(display_list), figsize=(15,15))
for i in range(len(display_list)):
axs1[i].imshow(display_list[i] * 0.5 + 0.5)
axs1[i].set_title(titleList[i])
fig1.savefig(figname)
plt.close(fig1)
del fig1, axs1
def fit(self, train_ds, epochs, test_ds, steps_per_epoch: int):
for epoch in range(epochs):
#generate sample output
if epoch % self.example_plot_frequency == 0:
for example_input, example_target in test_ds.take(1):
self.generate_images(self.generator, example_input, example_target, epoch)
# Train
train_pbar = tqdm(train_ds.enumerate(), total=steps_per_epoch)
train_pbar.set_description("Epoch {:05d}".format(epoch+1))
train_samples_in_epoch = 0
for _, (input_image, target) in train_pbar:
train_samples_in_epoch += 1
gen_loss, _, disc_loss_real, disc_loss_fake = self.train_step(input_image["factorData"], target["out_matrixData"], epoch)
self.__disc_train_loss_true_batches.append(disc_loss_real)
self.__disc_train_loss_fake_batches.append(disc_loss_fake)
self.__gen_train_loss_batches.append(gen_loss)
train_bar_postfixDict= {"g": "{:.4f}".format(self.__gen_train_loss_batches[-1]),
"dt": "{:.3f}".format(self.__disc_train_loss_true_batches[-1]),
"df": "{:.3f}".format(self.__disc_train_loss_fake_batches[-1])}
if len(self.__gen_val_loss_epochs) > 0:
train_bar_postfixDict["v"] = "{:.3f}".format(self.__gen_val_loss_epochs[-1])
train_pbar.set_postfix( train_bar_postfixDict )
self.__batch_counter += 1
self.__gen_train_loss_epochs.append(np.mean(self.__gen_train_loss_batches[-train_samples_in_epoch:]))
self.__disc_train_loss_true_epochs.append(np.mean(self.__disc_train_loss_true_batches[-train_samples_in_epoch:]))
self.__disc_train_loss_fake_epochs.append(np.mean(self.__disc_train_loss_fake_batches[-train_samples_in_epoch:]))
# Validation
validation_samples_in_epoch = 0
for input_image, target in test_ds:
gen_loss_val, disc_loss_val = self.validationStep(input_image["factorData"], target["out_matrixData"])
self.__gen_val_loss_batches.append(gen_loss_val)
self.__disc_val_loss_batches.append(disc_loss_val)
validation_samples_in_epoch += 1
self.__disc_val_loss_epochs.append(np.mean(self.__disc_val_loss_batches[-validation_samples_in_epoch:]))
self.__gen_val_loss_epochs.append(np.mean(self.__gen_val_loss_batches[-validation_samples_in_epoch:]))
#count the epoch
self.__epoch_counter += 1
# saving the model every 20 epochs
if (epoch + 1) % self.progress_plot_frequency == 0:
#plot loss
utils.plotLoss(pGeneratorLossValueLists=[self.__gen_train_loss_epochs, self.__gen_val_loss_epochs],
pDiscLossValueLists=[ [self.loss_weight_discriminator*sum(x) for x in zip(self.__disc_train_loss_fake_epochs, self.__disc_train_loss_true_epochs)],
self.__disc_train_loss_true_epochs,
self.__disc_train_loss_fake_epochs,
self.__disc_val_loss_epochs],
pGeneratorLossNameList=["training", "validation"],
pDiscLossNameList=["train total", "train real", "train gen.", "valid. total"],
pFilename=self.progress_plot_name,
useLogscaleList=[True, False])
np.savez(os.path.join(self.log_dir, "lossValues_{:05d}.npz".format(epoch)),
genLossTrain=self.__gen_train_loss_batches,
genLossVal=self.__gen_val_loss_batches,
discLossTrain_True=self.__disc_train_loss_true_batches,
discLossTrain_Fake=self.__disc_train_loss_fake_batches,
discLossVal=self.__disc_val_loss_batches)
self.generator.save(filepath=os.path.join(self.log_dir, "generator_{:05d}.h5".format(epoch)), save_format="h5")
self.discriminator.save(filepath=os.path.join(self.log_dir, "discriminator_{:05d}.h5".format(epoch)), save_format="h5")
self.checkpoint.save(file_prefix = self.checkpoint_prefix)
utils.plotLoss(pGeneratorLossValueLists=[self.__gen_train_loss_epochs, self.__gen_val_loss_epochs],
pDiscLossValueLists=[ [self.loss_weight_discriminator*sum(x) for x in zip(self.__disc_train_loss_fake_epochs, self.__disc_train_loss_true_epochs)],
self.__disc_train_loss_true_epochs,
self.__disc_train_loss_fake_epochs,
self.__disc_val_loss_epochs],
pGeneratorLossNameList=["training", "validation"],
pDiscLossNameList=["train total", "train real", "train gen.", "valid. total"],
pFilename=self.progress_plot_name,
useLogscaleList=[True, False])
np.savez(os.path.join(self.log_dir, "lossValues_{:05d}.npz".format(epoch)),
genLossTrain=self.__gen_train_loss_batches,
genLossVal=self.__gen_val_loss_batches,
discLossTrain_True=self.__disc_train_loss_true_batches,
discLossTrain_Fake=self.__disc_train_loss_fake_batches,
discLossVal=self.__disc_val_loss_batches)
self.generator.save(filepath=os.path.join(self.log_dir, "generator_{:05d}.h5".format(epoch)), save_format="h5")
self.discriminator.save(filepath=os.path.join(self.log_dir, "discriminator_{:05d}.h5".format(epoch)), save_format="h5")
def plotModels(self, outputpath: str, figuretype: str):
generatorPlotName = "generatorModel.{:s}".format(figuretype)
generatorPlotName = os.path.join(outputpath, generatorPlotName)
discriminatorPlotName = "discriminatorModel.{:s}".format(figuretype)
discriminatorPlotName = os.path.join(outputpath, discriminatorPlotName)
generatorEmbeddingPlotName = "generatorEmbeddingModel.{:s}".format(figuretype)
generatorEmbeddingPlotName = os.path.join(outputpath, generatorEmbeddingPlotName)
discriminatorEmbeddingPlotName = "discriminatorEmbeddingModel.{:s}".format(figuretype)
discriminatorEmbeddingPlotName = os.path.join(outputpath, discriminatorEmbeddingPlotName)
tf.keras.utils.plot_model(self.generator, show_shapes=True, to_file=generatorPlotName)
tf.keras.utils.plot_model(self.discriminator, show_shapes=True, to_file=discriminatorPlotName)
tf.keras.utils.plot_model(self.generator_embedding, show_shapes=True, to_file=generatorEmbeddingPlotName)
tf.keras.utils.plot_model(self.discriminator_embedding, show_shapes=True, to_file=discriminatorEmbeddingPlotName)
def predict(self, test_ds, steps_per_record):
predictedArray = []
for batch in tqdm(test_ds, desc="Predicting", total=steps_per_record):
predBatch = self.predictionStep(input_batch=batch).numpy()
for i in range(predBatch.shape[0]):
predictedArray.append(predBatch[i][:,:,0])
predictedArray = np.array(predictedArray)
return predictedArray
@tf.function
def predictionStep(self, input_batch, training=True):
return self.generator(input_batch, training=training)
def loadGenerator(self, trainedModelPath: str):
'''
load a trained generator model for prediction
'''
try:
trainedModel = tf.keras.models.load_model(filepath=trainedModelPath,
custom_objects={"CustomReshapeLayer": CustomReshapeLayer(self.input_size)})
self.generator = trainedModel
except Exception as e:
msg = str(e)
msg += "\nError: failed to load trained model"
raise ValueError(msg)
class CustomReshapeLayer(tf.keras.layers.Layer):
'''
reshape a 1D tensor such that it represents
the upper triangular part of a square 2D matrix with shape (matsize, matsize)
#example:
[1,2,3,4,5,6] => [[1,2,3],
[0,4,5],
[0,0,6]]
'''
def __init__(self, matsize, **kwargs):
super(CustomReshapeLayer, self).__init__(**kwargs)
self.matsize = matsize
self.triu_indices = [ [x,y] for x,y in zip(np.triu_indices(self.matsize)[0], np.triu_indices(self.matsize)[1]) ]
def call(self, inputs):
return tf.map_fn(self.pickItems, inputs, parallel_iterations=20, swap_memory=True)
def pickItems(self, inputVec):
sparseTriuTens = tf.SparseTensor(self.triu_indices,
values=inputVec,
dense_shape=[self.matsize, self.matsize] )
return tf.sparse.to_dense(sparseTriuTens)
def get_config(self):
return {"matsize": self.matsize}