-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_doc.py
712 lines (619 loc) · 28 KB
/
train_doc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
'''
Code to accompany
"Unsupervised Discovery of Multimodal Links in Multi-Sentence/Multi-Image Documents."
https://github.com/jmhessel/multi-retrieval
This is a work-in-progress TF2.0 port.
'''
import argparse
import collections
import json
import tensorflow as tf
import numpy as np
import os
import sys
import tqdm
import text_utils
import image_utils
import eval_utils
import model_utils
import training_utils
import bipartite_utils
import pickle
import sklearn.preprocessing
from pprint import pprint
def load_data(fname):
with open(fname) as f:
return json.loads(f.read())
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('documents',
help='json of train/val/test documents.')
parser.add_argument('--image_features',
help='path to pre-extracted image-feature numpy array.')
parser.add_argument('--image_id2row',
help='path to mapping from image id --> numpy row for image features.')
parser.add_argument('--joint_emb_dim',
type=int,
help='Embedding dimension of the shared, multimodal space.',
default=1024)
parser.add_argument('--margin',
type=float,
help='Margin for computing hinge loss.',
default=.2)
parser.add_argument('--seq_len',
type=int,
help='Maximum token sequence length for each sentence before truncation.',
default=20)
parser.add_argument('--docs_per_batch',
type=int,
help='How many docs per batch? 11 docs = 10 negative samples per doc.',
default=11)
parser.add_argument('--neg_mining',
help='What type of negative mining?',
default='hard_negative',
choices=['negative_sample', 'hard_negative'],
type=str)
parser.add_argument('--sim_mode',
help='What similarity function should we use?',
default='AP',
choices=['DC','TK','AP'],
type=str)
parser.add_argument('--sim_mode_k',
help='If --sim_mode=TK/AP, what should the k be? '
'k=-1 for dynamic = min(n_images, n_sentences))? '
'if k > 0, then k=ceil(1./k * min(n_images, n_sentences))',
default=-1,
type=float)
parser.add_argument('--lr',
type=float,
help='Starting learning rate',
default=.0002)
parser.add_argument('--n_epochs',
type=int,
help='How many epochs to run for?',
default=60)
parser.add_argument('--checkpoint_dir',
type=str,
help='What directory to save checkpoints in?',
default='checkpoints')
parser.add_argument('--word2vec_binary',
type=str,
help='If cached word embeddings have not been generated, '
'what is the location of the word2vec binary?',
default=None)
parser.add_argument('--cached_word_embeddings',
type=str,
help='Where are/will the cached word embeddings saved?',
default='cached_word2vec.json')
parser.add_argument('--print_metrics',
type=int,
help='Should we print the metrics if there are ground-truth '
'labels, or no?',
default=0)
parser.add_argument('--cached_vocab',
type=str,
help='Where should we cache the vocab, if anywhere '
'(None means no caching)',
default=None)
parser.add_argument('--output',
type=str,
default=None,
help='If output is set, we will save a pkl file'
'with the validation/test metrics.')
parser.add_argument('--seed',
type=int,
help='Random seed',
default=1)
parser.add_argument('--dropout',
type=float,
default=0.5,
help='How much dropout should we apply?')
parser.add_argument('--subsample_image',
type=int,
default=-1,
help='Should we subsample images to constant lengths? '
'This option is useful if the model is being trained end2end '
'and there are memory issues.')
parser.add_argument('--subsample_text',
type=int,
default=-1,
help='Should we subsample sentences to constant lengths? '
'This option is useful if the model is being trained end2end '
'and there are memory issues.')
parser.add_argument('--rnn_type',
type=str,
default='GRU',
help='What RNN should we use')
parser.add_argument('--end2end',
type=int,
default=0,
help='Should we backprop through the whole vision network?')
parser.add_argument('--image_dir',
type=str,
default=None,
help='What image dir should we use, if end2end?')
parser.add_argument('--lr_patience',
type=int,
default=3,
help='What learning rate patience should we use?')
parser.add_argument('--lr_decay',
type=float,
default=.2,
help='What learning rate decay factor should we use?')
parser.add_argument('--min_lr',
type=float,
default=.0000001,
help='What learning rate decay factor should we use?')
parser.add_argument('--full_image_paths',
type=int,
default=0,
help='For end2end training, should we use full image paths '
'(i.e., is the file extention already on images?)?')
parser.add_argument('--test_eval',
type=int,
help='(DEBUG OPTION) If test_eval >= 1, then training '
'only happens over this many batches',
default=-1)
parser.add_argument('--force',
type=int,
default=0,
help='Should we force the run if the output exists?')
parser.add_argument('--save_predictions',
type=str,
default=None,
help='Should we save the train/val/test predictions? '
'If so --- they will be saved in this directory.')
parser.add_argument('--image_model_checkpoint',
type=str,
default=None,
help='If set, the image model will be initialized from '
'this model checkpoint.')
parser.add_argument('--text_model_checkpoint',
type=str,
default=None,
help='If set, the text model will be initialized from '
'this model checkpoint.')
parser.add_argument('--loss_mode',
help='What loss function should we use?',
default='hinge',
choices=['hinge', 'logistic', 'softmax'],
type=str)
parser.add_argument('--compute_mscoco_eval_metrics',
help='Should we compute the mscoco MT metrics?',
default=0,
type=int)
parser.add_argument('--compute_metrics_train',
help='Should we also compute metrics over the training set?',
default=1,
type=int)
parser.add_argument('--lr_warmup_steps',
help='If positive value, we will warmup the learning rate linearly '
'over this many steps.',
default=-1,
type=int)
parser.add_argument('--l2_norm',
help='If 1, we will l2 normalize extracted features, else, no normalization.',
default=1,
type=int)
parser.add_argument('--n_layers',
help='How many layers in the encoders?',
default=1,
type=int,
choices=[1,2,3])
parser.add_argument('--scale_image_features',
help='Should we standard scale image features?',
default=0,
type=int)
args = parser.parse_args()
# check to make sure that various flags are set correctly
if args.end2end:
assert args.image_dir is not None
if not args.end2end:
assert args.image_features is not None and args.image_id2row is not None
# print out some info about the run's inputs/outputs
if args.output and '.pkl' not in args.output:
args.output += '.pkl'
if args.output:
print('Output will be saved to {}'.format(args.output))
print('Model checkpoints will be saved in {}'.format(args.checkpoint_dir))
if args.output and os.path.exists(args.output) and not args.force:
print('{} already done! If you want to force it, set --force 1'.format(args.output))
quit()
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
if args.save_predictions:
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
os.makedirs(args.checkpoint_dir + '/train')
os.makedirs(args.checkpoint_dir + '/val')
os.makedirs(args.checkpoint_dir + '/test')
return args
def main():
args = parse_args()
np.random.seed(args.seed)
data = load_data(args.documents)
train, val, test = data['train'], data['val'], data['test']
np.random.shuffle(train); np.random.shuffle(val); np.random.shuffle(test)
max_n_sentence, max_n_image = -1, -1
for d in train + val + test:
imgs, sents, meta = d
max_n_sentence = max(max_n_sentence, len(sents))
max_n_image = max(max_n_image, len(imgs))
# remove zero image/zero sentence cases:
before_lens = list(map(len, [train, val, test]))
train = [t for t in train if len(t[0]) > 0 and len(t[1]) > 0]
val = [t for t in val if len(t[0]) > 0 and len(t[1]) > 0]
test = [t for t in test if len(t[0]) > 0 and len(t[1]) > 0]
after_lens = list(map(len, [train, val, test]))
for bl, al, split in zip(before_lens, after_lens, ['train', 'val', 'test']):
if bl == al: continue
print('Removed {} documents from {} split that had zero images and/or sentences'.format(
bl-al, split))
print('Max n sentence={}, max n image={}'.format(max_n_sentence, max_n_image))
if args.cached_vocab:
print('Saving/loading vocab from {}'.format(args.cached_vocab))
# create vocab from training documents:
flattened_train_sents = []
for _, sents, _ in train:
flattened_train_sents.extend([s[0] for s in sents])
word2idx = text_utils.get_vocab(flattened_train_sents, cached=args.cached_vocab)
print('Vocab size was {}'.format(len(word2idx)))
if args.word2vec_binary:
we_init = text_utils.get_word2vec_matrix(
word2idx, args.cached_word_embeddings, args.word2vec_binary)
else:
we_init = np.random.uniform(low=-.02, high=.02, size=(len(word2idx), 300))
if args.end2end:
image_features = None
image_idx2row = None
else:
image_features = np.load(args.image_features)
image_idx2row = load_data(args.image_id2row)
if args.scale_image_features:
ss = sklearn.preprocessing.StandardScaler()
all_train_images = []
for img, txt, cid in train:
all_train_images.extend([x[0] for x in img])
print('standard scaling with {} images total'.format(len(all_train_images)))
all_train_rows = [image_idx2row[cid] for cid in all_train_images]
ss.fit(image_features[np.array(all_train_rows)])
image_features = ss.transform(image_features)
word_emb_dim = 300
if val[0][0][0][1] is not None:
ground_truth = True
print('The input has ground truth, so AUC will be computed.')
else:
ground_truth = False
# Step 1: Specify model inputs/outputs:
# (n docs, n sent, max n words,)
text_inp = tf.keras.layers.Input((None, args.seq_len))
# this input tells you how many sentences are really in each doc
text_n_inp = tf.keras.layers.Input((1,), dtype='int32')
if args.end2end:
# (n docs, n image, x, y, color)
img_inp = tf.keras.layers.Input((None, 224, 224, 3))
else:
# (n docs, n image, feature dim)
img_inp = tf.keras.layers.Input((None, image_features.shape[1]))
# this input tells you how many images are really in each doc
img_n_inp = tf.keras.layers.Input((1,), dtype='int32')
# Step 2: Define transformations to shared multimodal space.
# Step 2.1: The text model:
if args.text_model_checkpoint:
print('Loading pretrained text model from {}'.format(
args.text_model_checkpoint))
single_text_doc_model = tf.keras.models.load_model(args.text_model_checkpoint)
extracted_text_features = single_text_doc_model(text_inp)
else:
word_embedding = tf.keras.layers.Embedding(
len(word2idx),
word_emb_dim,
weights=[we_init] if we_init is not None else None,
mask_zero=True)
element_dropout = tf.keras.layers.SpatialDropout1D(args.dropout)
if args.rnn_type == 'GRU':
rnn_maker = tf.keras.layers.GRU
else:
rnn_maker = tf.keras.layers.LSTM
enc_layers = []
for idx in range(args.n_layers):
if idx == args.n_layers-1:
enc_layers.append(rnn_maker(args.joint_emb_dim))
else:
enc_layers.append(rnn_maker(args.joint_emb_dim, return_sequences=True))
embedded_text_inp = word_embedding(text_inp)
extracted_text_features = tf.keras.layers.TimeDistributed(element_dropout)(embedded_text_inp)
for l in enc_layers:
extracted_text_features = tf.keras.layers.TimeDistributed(l)(extracted_text_features)
# extracted_text_features is now (n docs, max n setnences, multimodal dim)
if args.l2_norm:
l2_norm_layer = tf.keras.layers.Lambda(lambda x: tf.nn.l2_normalize(x, axis=-1))
extracted_text_features = l2_norm_layer(extracted_text_features)
single_text_doc_model = tf.keras.models.Model(
inputs=text_inp,
outputs=extracted_text_features)
# Step 2.2: The image model:
if args.image_model_checkpoint:
print('Loading pretrained image model from {}'.format(
args.image_model_checkpoint))
single_img_doc_model = tf.keras.models.load_model(args.image_model_checkpoint)
extracted_img_features = single_img_doc_model(img_inp)
else:
if args.end2end:
img_projection = tf.keras.layers.Dense(args.joint_emb_dim)
from tf.keras.applications.nasnet import NASNetMobile
cnn = tf.keras.applications.nasnet.NASNetMobile(
include_top=False, input_shape=(224, 224, 3), pooling='avg')
extracted_img_features = tf.keras.layers.TimeDistributed(cnn)(img_inp)
if args.dropout > 0.0:
extracted_img_features = tf.keras.layers.TimeDistributed(
tf.keras.layers.Dropout(args.dropout))(extracted_img_features)
extracted_img_features = keras.layers.TimeDistributed(img_projection)(
extracted_img_features)
else:
extracted_img_features = tf.keras.layers.Masking()(img_inp)
if args.dropout > 0.0:
extracted_img_features = tf.keras.layers.TimeDistributed(
tf.keras.layers.Dropout(args.dropout))(extracted_img_features)
enc_layers = []
for idx in range(args.n_layers):
if idx == args.n_layers-1:
enc_layers.append(tf.keras.layers.Dense(args.joint_emb_dim))
else:
enc_layers.append(tf.keras.layers.Dense(args.joint_emb_dim, activation='relu'))
enc_layers.append(tf.keras.layers.BatchNormalization())
for l in enc_layers:
extracted_img_features = tf.keras.layers.TimeDistributed(l)(extracted_img_features)
# extracted_img_features is now (n docs, max n images, multimodal dim)
if args.l2_norm:
l2_norm_layer = tf.keras.layers.Lambda(lambda x: tf.nn.l2_normalize(x, axis=-1))
extracted_img_features = l2_norm_layer(extracted_img_features)
single_img_doc_model = tf.keras.models.Model(
inputs=img_inp,
outputs=extracted_img_features)
# Step 3: Extract/stack the non-padding image/sentence representations
def mask_slice_and_stack(inp):
stacker = []
features, n_inputs = inp
n_inputs = tf.dtypes.cast(n_inputs, tf.int32)
# for each document, we will extract the portion of input features that are not padding
# this means, for features[doc_idx], we will take the first n_inputs[doc_idx] rows.
# we stack them into one big array so we can do a big cosine sim dot product between all
# sentence image pairs in parallel. We'll slice up this array back up later.
for idx in range(args.docs_per_batch):
cur_valid_idxs = tf.range(n_inputs[idx,0])
cur_valid_features = features[idx]
feats = tf.gather(cur_valid_features, cur_valid_idxs)
stacker.append(feats)
return tf.concat(stacker, axis=0)
# extracted text/img features are (n_docs, max_in_seq, dim)
# we want to compute cosine sims between all (sent, img) pairs quickly
# so we will stack them into new tensors ...
# text_enc has shape (total number of sent in batch, dim)
# img_enc has shape (total number of image in batch, dim)
text_enc = mask_slice_and_stack([extracted_text_features, text_n_inp])
img_enc = mask_slice_and_stack([extracted_img_features, img_n_inp])
def DC_sim(sim_matrix):
text2im_S = tf.reduce_mean(tf.reduce_max(sim_matrix, 1))
im2text_S = tf.reduce_mean(tf.reduce_max(sim_matrix, 0))
return text2im_S + im2text_S
def get_k(sim_matrix):
k = tf.minimum(tf.shape(sim_matrix)[0], tf.shape(sim_matrix)[1])
if args.sim_mode_k > 0:
k = tf.dtypes.cast(k, tf.float32)
k = tf.math.ceil(tf.div(k, args.sim_mode_k))
k = tf.dtypes.cast(k, tf.int32)
return k
def TK_sim(sim_matrix):
k = get_k(sim_matrix)
im2text_S, text2im_S = tf.reduce_max(sim_matrix, 0), tf.reduce_max(sim_matrix, 1)
text2im_S = tf.reduce_mean(tf.math.top_k(text2im_S, k=k)[0], axis=-1)
im2text_S = tf.reduce_mean(tf.math.top_k(im2text_S, k=k)[0], axis=-1)
return text2im_S + im2text_S
bipartite_match_fn = bipartite_utils.generate_fast_hungarian_solving_function()
def AP_sim(sim_matrix):
k = get_k(sim_matrix)
sol = tf.numpy_function(bipartite_match_fn, [sim_matrix, k], tf.int32)
return tf.reduce_mean(tf.gather_nd(sim_matrix, sol))
if args.sim_mode == 'DC':
sim_fn = DC_sim
elif args.sim_mode == 'TK':
sim_fn = TK_sim
elif args.sim_mode == 'AP':
sim_fn = AP_sim
else:
raise NotImplementedError('{} is not implemented sim function'.format(args.sim_fn))
def make_sims(inp):
sims = tf.keras.backend.dot(inp[0], tf.keras.backend.transpose(inp[1]))
return sims
all_sims = make_sims([text_enc, img_enc])
get_pos_neg_sims = model_utils.make_get_pos_neg_sims(
args,
sim_fn)
pos_sims, neg_img_sims, neg_text_sims = tf.keras.layers.Lambda(
get_pos_neg_sims)([all_sims, text_n_inp, img_n_inp])
if args.loss_mode == 'hinge':
def per_neg_loss(inp):
pos_s, neg_s = inp
return tf.math.maximum(neg_s - pos_s + args.margin, 0)
elif args.loss_mode == 'logistic':
def per_neg_loss(inp):
pos_s, neg_s = inp
return tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.ones_like(neg_s),
logits=pos_s - neg_s)
elif args.loss_mode == 'softmax':
def per_neg_loss(inp):
pos_s, neg_s = inp
pos_s -= args.margin
pos_l, neg_l = tf.ones_like(pos_s), tf.zeros_like(neg_s)
return tf.nn.softmax_cross_entropy_with_logits(
tf.concat([pos_l, neg_l], axis=1),
tf.concat([pos_s, neg_s], axis=1))
neg_img_losses = per_neg_loss([pos_sims, neg_img_sims])
neg_text_losses = per_neg_loss([pos_sims, neg_text_sims])
if args.loss_mode != 'softmax':
if args.neg_mining == 'negative_sample':
pool_fn = lambda x: tf.reduce_mean(x, axis=1, keepdims=True)
elif args.neg_mining == 'hard_negative':
pool_fn = lambda x: tf.reduce_max(x, axis=1, keepdims=True)
else:
raise NotImplementedError('{} is not a valid for args.neg_mining'.format(
args.neg_mining))
neg_img_loss = tf.keras.layers.Lambda(pool_fn, name='neg_img')(neg_img_losses)
neg_text_loss = tf.keras.layers.Lambda(pool_fn, name='neg_text')(neg_text_losses)
else:
neg_img_loss = neg_img_losses
neg_text_loss = neg_text_losses
inputs = [text_inp,
img_inp,
text_n_inp,
img_n_inp]
model = tf.keras.models.Model(inputs=inputs,
outputs=[neg_img_loss, neg_text_loss])
opt = tf.keras.optimizers.Adam(args.lr)
def identity(y_true, y_pred):
del y_true
return tf.reduce_mean(y_pred, axis=-1)
model.compile(opt, loss=identity)
if args.test_eval > 0:
train = train[:args.test_eval * args.docs_per_batch]
val = val[:args.test_eval * args.docs_per_batch]
test = test[:args.test_eval * args.docs_per_batch]
train_seq = training_utils.DocumentSequence(
train,
image_features,
image_idx2row,
max_n_sentence,
max_n_image,
word2idx,
args=args,
shuffle_docs=True,
shuffle_sentences=False,
shuffle_images=True)
val_seq = training_utils.DocumentSequence(
val,
image_features,
image_idx2row,
max_n_sentence,
max_n_image,
word2idx,
args=args,
augment=False,
shuffle_sentences=False,
shuffle_docs=False,
shuffle_images=False)
sdm = training_utils.SaveDocModels(
args.checkpoint_dir,
single_text_doc_model,
single_img_doc_model)
if args.loss_mode == 'hinge':
val_loss_thresh = 2 * args.margin # constant prediction performance
else:
val_loss_thresh = np.inf
reduce_lr = training_utils.ReduceLROnPlateauAfterValLoss(
activation_val_loss=val_loss_thresh,
factor=args.lr_decay,
patience=args.lr_patience,
min_lr=args.min_lr,
verbose=True)
callbacks = [reduce_lr, sdm]
if args.print_metrics:
metrics_printer = training_utils.PrintMetrics(
val,
image_features,
image_idx2row,
word2idx,
single_text_doc_model,
single_img_doc_model,
args)
callbacks.append(metrics_printer)
if args.lr_warmup_steps > 0:
warmup_lr = training_utils.LearningRateLinearIncrease(
args.lr,
args.lr_warmup_steps)
callbacks.append(warmup_lr)
history = model.fit(
train_seq,
epochs=args.n_epochs,
validation_data=val_seq,
callbacks=callbacks)
if args.output:
best_image_model_str, best_sentence_model_str, best_logs, best_epoch = sdm.best_checkpoints_and_logs
single_text_doc_model = tf.keras.models.load_model(best_sentence_model_str)
single_image_doc_model = tf.keras.models.load_model(best_image_model_str)
if args.scale_image_features:
with open(args.checkpoint_dir + '/image_standardscaler.pkl', 'wb') as f:
pickle.dump(ss, f)
if ground_truth and args.compute_metrics_train:
train_aucs, train_match_metrics, train_mt_metrics = eval_utils.compute_match_metrics_doc(
train,
image_features,
image_idx2row,
word2idx,
single_text_doc_model,
single_img_doc_model,
args)
else:
train_aucs, train_match_metrics, train_mt_metrics = None, None, None
if ground_truth:
val_aucs, val_match_metrics, val_mt_metrics = eval_utils.compute_match_metrics_doc(
val,
image_features,
image_idx2row,
word2idx,
single_text_doc_model,
single_img_doc_model,
args)
test_aucs, test_match_metrics, test_mt_metrics = eval_utils.compute_match_metrics_doc(
test,
image_features,
image_idx2row,
word2idx,
single_text_doc_model,
single_img_doc_model,
args)
else:
train_aucs, val_aucs, test_aucs = None, None, None
train_match_metrics, val_match_metrics, test_match_metrics = None, None, None
train_mt_metrics, val_mt_metrics, test_mt_metrics = None, None, None
output = {'logs':best_logs,
'best_sentence_model_str':best_sentence_model_str,
'best_image_model_str':best_image_model_str,
'train_aucs':train_aucs,
'train_match_metrics':train_match_metrics,
'train_mt_metrics':train_mt_metrics,
'val_aucs':val_aucs,
'val_match_metrics':val_match_metrics,
'val_mt_metrics':val_mt_metrics,
'test_aucs':test_aucs,
'test_match_metrics':test_match_metrics,
'test_mt_metrics':test_mt_metrics,
'args':args,
'epoch':best_epoch}
if args.scale_image_features:
output['image_standard_scaler_str'] = args.checkpoint_dir + '/image_standardscaler.pkl'
for k, v in history.history.items():
output['history_{}'.format(k)] = v
if args.print_metrics:
for k, v in metrics_printer.history.items():
output['metrics_history_{}'.format(k)] = v
with open(args.output, 'wb') as f:
pickle.dump(output, f, protocol=pickle.HIGHEST_PROTOCOL)
print('saved output to {}'.format(args.output))
if args.save_predictions:
for d, name in zip([train, val, test], ['train', 'val', 'test']):
out_dir = args.save_predictions + '/' + name
if not os.path.exists(out_dir):
os.makedirs(out_dir)
eval_utils.save_predictions(
d,
image_features,
image_idx2row,
word2idx,
single_text_doc_model,
single_img_doc_model,
out_dir,
args)
if __name__ == '__main__':
main()