Skip to content

Latest commit

 

History

History
63 lines (56 loc) · 1.91 KB

eval.md

File metadata and controls

63 lines (56 loc) · 1.91 KB

Evaluation

Final results

Final results are saved here. You can download and extract it to $PRJ_ROOT/sparsePlane/results.

Alternatively, you can generate the results by:

# To evaluate AP, camera
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train_net.py \
--config-file tools/demo/config.yaml \
--eval-only \
--num-gpus 4 \
DATASETS.TEST "('mp3d_test',)" \
MODEL.WEIGHTS ./models/model_ICCV.pth \
OUTPUT_DIR ./results/predbox

# For correspondence, we use GT box.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train_net.py \
--config-file tools/demo/config.yaml \
--eval-only \
--num-gpus 4 \
DATASETS.TEST "('mp3d_test',)" \
MODEL.WEIGHTS ./models/model_ICCV.pth \
TEST.EVAL_GT_BOX True \
OUTPUT_DIR ./results/gtbox

Evaluate AP

python tools/eval.py \
--config-file results/predbox/config.yaml \
--rcnn-cached-file results/predbox/instances_predictions.pth \
--camera-cached-file results/predbox/summary.pkl \
--optimized-dict-path results/predbox/continuous.pkl \
--evaluate AP 

Evaluate Camera

python tools/eval.py \
--config-file results/predbox/config.yaml \
--rcnn-cached-file results/predbox/instances_predictions.pth \
--camera-cached-file results/predbox/summary.pkl \
--optimized-dict-path results/predbox/continuous.pkl \
--evaluate camera

Evaluate Correspondence

python tools/eval.py \
--config-file results/gtbox/config.yaml \
--rcnn-cached-file results/gtbox/instances_predictions.pth \
--camera-cached-file results/gtbox/summary.pkl \
--evaluate correspondence \
--optimized-dict-path results/gtbox/discrete.pkl

Note

If you do not want to use cached results, set --optimized-dict-path to be '', then eval.py will generate optimized_dict online. In eval.py, you can uncomment save_dict(optimized_dict, './results/gtbox', 'discrete') to save discrete.pkl.