Final results are saved here.
You can download and extract it to $PRJ_ROOT/sparsePlane/results
.
Alternatively, you can generate the results by:
# To evaluate AP, camera
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train_net.py \
--config-file tools/demo/config.yaml \
--eval-only \
--num-gpus 4 \
DATASETS.TEST "('mp3d_test',)" \
MODEL.WEIGHTS ./models/model_ICCV.pth \
OUTPUT_DIR ./results/predbox
# For correspondence, we use GT box.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train_net.py \
--config-file tools/demo/config.yaml \
--eval-only \
--num-gpus 4 \
DATASETS.TEST "('mp3d_test',)" \
MODEL.WEIGHTS ./models/model_ICCV.pth \
TEST.EVAL_GT_BOX True \
OUTPUT_DIR ./results/gtbox
python tools/eval.py \
--config-file results/predbox/config.yaml \
--rcnn-cached-file results/predbox/instances_predictions.pth \
--camera-cached-file results/predbox/summary.pkl \
--optimized-dict-path results/predbox/continuous.pkl \
--evaluate AP
python tools/eval.py \
--config-file results/predbox/config.yaml \
--rcnn-cached-file results/predbox/instances_predictions.pth \
--camera-cached-file results/predbox/summary.pkl \
--optimized-dict-path results/predbox/continuous.pkl \
--evaluate camera
python tools/eval.py \
--config-file results/gtbox/config.yaml \
--rcnn-cached-file results/gtbox/instances_predictions.pth \
--camera-cached-file results/gtbox/summary.pkl \
--evaluate correspondence \
--optimized-dict-path results/gtbox/discrete.pkl
If you do not want to use cached results, set --optimized-dict-path
to be ''
, then eval.py
will generate optimized_dict
online.
In eval.py
, you can uncomment
save_dict(optimized_dict, './results/gtbox', 'discrete')
to save discrete.pkl
.