-
Notifications
You must be signed in to change notification settings - Fork 15
/
app.py
197 lines (151 loc) Β· 6.24 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import json
import time
import pickle
import joblib
import hopsworks
import streamlit as st
from geopy import distance
import plotly.express as px
import folium
from streamlit_folium import st_folium
from functions import *
def print_fancy_header(text, font_size=22, color="#ff5f27"):
res = f'<span style="color:{color}; font-size: {font_size}px;">{text}</span>'
st.markdown(res, unsafe_allow_html=True)
@st.cache_data()
def get_batch_data_from_fs(td_version, date_threshold):
st.write(f"Retrieving the Batch data since {date_threshold}")
feature_view.init_batch_scoring(training_dataset_version=td_version)
batch_data = feature_view.get_batch_data(start_time=date_threshold)
return batch_data
@st.cache_data()
def download_model(name="air_quality_xgboost_model", version=1):
mr = project.get_model_registry()
retrieved_model = mr.get_model(
name="air_quality_xgboost_model",
version=1
)
saved_model_dir = retrieved_model.download()
return saved_model_dir
def plot_pm2_5(df):
# create figure with plotly express
fig = px.line(df, x='date', y='pm2_5', color='city_name')
# customize line colors and styles
fig.update_traces(mode='lines+markers')
fig.update_layout({
'plot_bgcolor': 'rgba(0, 0, 0, 0)',
'paper_bgcolor': 'rgba(0, 0, 0, 0)',
'legend_title': 'City',
'legend_font': {'size': 12},
'legend_bgcolor': 'rgba(0, 0, 0, 0)',
'xaxis': {'title': 'Date'},
'yaxis': {'title': 'PM2.5'},
'shapes': [{
'type': 'line',
'x0': datetime.datetime.now().strftime('%Y-%m-%d'),
'y0': 0,
'x1': datetime.datetime.now().strftime('%Y-%m-%d'),
'y1': df['pm2_5'].max(),
'line': {'color': 'red', 'width': 2, 'dash': 'dashdot'}
}]
})
# show plot
st.plotly_chart(fig, use_container_width=True)
with open('target_cities.json') as json_file:
target_cities = json.load(json_file)
#########################
st.title('π« Air Quality Prediction π¦')
st.write(3 * "-")
print_fancy_header('\nπ‘ Connecting to Hopsworks Feature Store...')
st.write("Logging... ")
# (Attention! If the app has stopped at this step,
# please enter your Hopsworks API Key in the commmand prompt.)
project = hopsworks.login()
fs = project.get_feature_store()
st.write("β
Logged in successfully!")
st.write("Getting the Feature View...")
feature_view = fs.get_feature_view(
name = 'air_quality_fv',
version = 1
)
st.write("β
Success!")
# I am going to load data for of last 60 days (for feature engineering)
today = datetime.date.today()
date_threshold = today - datetime.timedelta(days=60)
st.write(3 * "-")
print_fancy_header('\nβοΈ Retriving batch data from Feature Store...')
batch_data = get_batch_data_from_fs(td_version=1,
date_threshold=date_threshold)
st.write("Batch data:")
st.write(batch_data.sample(5))
saved_model_dir = download_model(
name="air_quality_xgboost_model",
version=1
)
pipeline = joblib.load(saved_model_dir + "/xgboost_pipeline.pkl")
st.write("\n")
st.write("β
Model was downloaded and cached.")
st.write(3 * '-')
st.write("\n")
print_fancy_header(text="π Select the cities using the form below. \
Click the 'Submit' button at the bottom of the form to continue.",
font_size=22)
dict_for_streamlit = {}
for continent in target_cities:
for city_name, coords in target_cities[continent].items():
dict_for_streamlit[city_name] = coords
selected_cities_full_list = []
with st.form(key="user_inputs"):
print_fancy_header(text='\nπΊ Here you can choose cities from the drop-down menu',
font_size=20, color="#00FFFF")
cities_multiselect = st.multiselect(label='',
options=dict_for_streamlit.keys())
selected_cities_full_list.extend(cities_multiselect)
st.write("_" * 3)
print_fancy_header(text="\nπ To add a city using the interactive map, click somewhere \
(for the coordinates to appear)",
font_size=20, color="#00FFFF")
my_map = folium.Map(location=[42.57, -44.092], zoom_start=2)
# Add markers for each city
for city_name, coords in dict_for_streamlit.items():
folium.CircleMarker(
location=coords
).add_to(my_map)
my_map.add_child(folium.LatLngPopup())
res_map = st_folium(my_map, width=640, height=480)
try:
new_lat, new_long = res_map["last_clicked"]["lat"], res_map["last_clicked"]["lng"]
# Calculate the distance between the clicked location and each city
distances = {city: distance.distance(coord, (new_lat, new_long)).km for city, coord in dict_for_streamlit.items()}
# Find the city with the minimum distance and print its name
nearest_city = min(distances, key=distances.get)
print_fancy_header(text=f"You have selected {nearest_city} using map", font_size=18, color="#52fa23")
selected_cities_full_list.append(nearest_city)
st.write(label_encoder.transform([nearest_city])[0])
except Exception as err:
print(err)
pass
submit_button = st.form_submit_button(label='Submit')
if submit_button:
st.write('Selected cities:', selected_cities_full_list)
st.write(3*'-')
dataset = batch_data
dataset = dataset.sort_values(by=["city_name", "date"])
st.write("\n")
print_fancy_header(text='\nπ§ Predicting PM2.5 for selected cities...',
font_size=18, color="#FDF4F5")
st.write("")
preds = pd.DataFrame(columns=dataset.columns)
for city_name in selected_cities_full_list:
st.write(f"\t * {city_name}...")
features = dataset.loc[dataset['city_name'] == city_name]
print(features.head())
features['pm2_5'] = pipeline.predict(features)
preds = pd.concat([preds, features])
st.write("")
print_fancy_header(text="πResults π",
font_size=22)
plot_pm2_5(preds[preds['city_name'].isin(selected_cities_full_list)])
st.write(3 * "-")
st.subheader('\nπ π π€ App Finished Successfully π€ π π')
st.button("Re-run")