-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathtest_image.py
257 lines (212 loc) · 10.3 KB
/
test_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from __future__ import division
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import sys
from shutil import copyfile
# tf
import numpy as np
import tensorflow as tf
import torch
# save result
import face_alignment
import cv2
import PIL.Image as pil
import matplotlib.pyplot as plt
import trimesh
# path
_curr_path = os.path.abspath(__file__) # /home/..../face
_cur_dir = os.path.dirname(_curr_path) # ./
# save result
from src_common.common.face_io import write_self_camera, write_self_lm
from tools.preprocess.detect_landmark import LM_detector_howfar
from tools.preprocess.crop_image_affine import *
# graph
from src_tfGraph.build_graph import MGC_TRAIN
flags = tf.app.flags
#
flags.DEFINE_string("dic_image", "data/test/", "Dataset directory")
flags.DEFINE_string("output_dir", "data/output_test_one", "Output directory")
flags.DEFINE_string("ckpt_file", "model/model-400000", "checkpoint file")
#flags.DEFINE_string("ckpt_file", "/home/jiaxiangshang/Downloads/202008/70_31_warpdepthepi_reg/model-400000", "checkpoint file")
#
flags.DEFINE_integer("batch_size", 1, "The size of of a sample batch")
flags.DEFINE_integer("img_width", 224, "Image(square) size")
flags.DEFINE_integer("img_height", 224, "Image(square) size")
# gpmm
flags.DEFINE_string("path_gpmm", "model/bfm09_trim_exp_uv_presplit.h5", "Dataset directory")
flags.DEFINE_integer("light_rank", 27, "3DMM coeffient rank")
flags.DEFINE_integer("gpmm_rank", 80, "3DMM coeffient rank")
flags.DEFINE_integer("gpmm_exp_rank", 64, "3DMM coeffient rank")
#
flags.DEFINE_boolean("flag_eval", True, "3DMM coeffient rank")
flags.DEFINE_boolean("flag_visual", True, "")
flags.DEFINE_boolean("flag_fore", False, "")
# visual
flags.DEFINE_boolean("flag_overlay_save", True, "")
flags.DEFINE_boolean("flag_overlayOrigin_save", True, "")
flags.DEFINE_boolean("flag_main_save", True, "")
FLAGS = flags.FLAGS
if __name__ == '__main__':
FLAGS.dic_image = os.path.join(_cur_dir, FLAGS.dic_image)
FLAGS.output_dir = os.path.join(_cur_dir, FLAGS.output_dir)
FLAGS.ckpt_file = os.path.join(_cur_dir, FLAGS.ckpt_file)
FLAGS.path_gpmm = os.path.join(_cur_dir, FLAGS.path_gpmm)
if not os.path.exists(FLAGS.dic_image):
print("Error: no dataset_dir found")
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
print("Finish copy")
"""
preprocess
"""
lm_d_hf = LM_detector_howfar(lm_type=int(3), device='cpu', face_detector='sfd')
"""
build graph
"""
system = MGC_TRAIN(FLAGS)
system.build_test_graph(
FLAGS, img_height=FLAGS.img_height, img_width=FLAGS.img_width, batch_size=FLAGS.batch_size
)
"""
load model
"""
test_var = tf.global_variables()#tf.model_variables()
# this because we need using the
test_var = [tv for tv in test_var if tv.op.name.find('VertexNormalsPreSplit') == -1]
saver = tf.train.Saver([var for var in test_var])
#config = tf.ConfigProto()
config=tf.ConfigProto(device_count={'cpu':0})
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
sess.graph.finalize()
saver.restore(sess, FLAGS.ckpt_file)
#
import time
# preprocess
path_image = os.path.join(FLAGS.dic_image, 'image04275.jpg')
image_bgr = cv2.imread(path_image)
image_rgb = image_bgr[..., ::-1]
if image_bgr is None:
print("Error: can not find ", path_image)
with torch.no_grad():
lm_howfar = lm_d_hf.lm_detection_howfar(image_bgr)
lm_howfar = lm_howfar[:, :2]
# face image align by landmark
# we also provide a tools to generate 'std_224_bfm09'
lm_trans, img_warped, tform = crop_align_affine_transform(lm_howfar, image_rgb, FLAGS.img_height, std_224_bfm09)
image_rgb_b = img_warped[None, ...]
# M_inv is used to back project the face reconstruction result to origin image
M_inv = np.linalg.inv(tform.params)
M = tform.params
#print(np.matmul(M_inv, M))
"""
Start
"""
time_st = time.time()
pred = system.inference(sess, image_rgb_b)
time_end = time.time()
print("Time each batch: ", time_end - time_st)
# name
dic_image, name_image = os.path.split(path_image)
name_image_pure, _ = os.path.splitext(name_image)
"""
Render
"""
image_input = image_rgb_b
"""
NP
"""
b = 0
vertex_shape = pred['vertex_shape'][0][b, :, :]
vertex_color = pred['vertex_color'][0][b, :, :]
vertex_color = np.clip(vertex_color, 0, 1)
#vertex_color_rgba = np.concatenate([vertex_color, np.ones([vertex_color.shape[0], 1])], axis=1)
vertex_color_ori = pred['vertex_color_ori'][0][b, :, :]
vertex_color_ori = np.clip(vertex_color_ori, 0, 1)
if FLAGS.flag_eval:
mesh_tri = trimesh.Trimesh(
vertex_shape.reshape(-1, 3),
system.h_lrgp.h_curr.mesh_tri_np.reshape(-1, 3),
vertex_colors=vertex_color.reshape(-1, 3),
process=False
)
mesh_tri.visual.kind == 'vertex'
path_mesh_save = os.path.join(FLAGS.output_dir, name_image_pure + ".ply")
mesh_tri.export(path_mesh_save)
"""
Landmark 3D
"""
path_lm3d_save = os.path.join(FLAGS.output_dir, name_image_pure + "_lm3d.txt")
lm_68 = vertex_shape[system.h_lrgp.h_curr.idx_lm68_np]
write_self_lm(path_lm3d_save, lm_68)
"""
Landmark 2D
"""
lm2d = pred['lm2d'][0][b, :, :]
path_lm2d_save = os.path.join(FLAGS.output_dir, name_image_pure + "_lm2d.txt")
write_self_lm(path_lm2d_save, lm2d)
"""
Pose
"""
path_cam_save = os.path.join(FLAGS.output_dir, name_image_pure + "_cam.txt")
pose = pred['gpmm_pose'][0][b, :]
intrinsic = pred['gpmm_intrinsic'][b, :, :]
write_self_camera(path_cam_save, FLAGS.img_width, FLAGS.img_height, intrinsic, pose)
"""
Common visual
"""
if FLAGS.flag_visual:
# visual
result_overlayMain_255 = pred['overlayMain_255'][0][b, :, :]
result_overlayTexMain_255 = pred['overlayTexMain_255'][0][b, :, :]
result_overlayGeoMain_255 = pred['overlayGeoMain_255'][0][b, :, :]
result_overlayLightMain_255 = pred['overlayLightMain_255'][0][b, :, :]
result_apper_mulPose_255 = pred['apper_mulPose_255'][0][b, :, :]
result_overlay_255 = pred['overlay_255'][0][b, :, :]
result_overlayTex_255 = pred['overlayTex_255'][0][b, :, :]
result_overlayGeo_255 = pred['overlayGeo_255'][0][b, :, :]
result_overlayLight_255 = pred['overlayLight_255'][0][b, :, :]
# common
visual_concat = np.concatenate([image_input[0], result_overlay_255, result_overlayGeo_255, result_apper_mulPose_255], axis=1)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_mulPoses.jpg")
plt.imsave(path_image_save, visual_concat)
if FLAGS.flag_overlayOrigin_save:
gpmm_render_mask = pred['gpmm_render_mask'][0][b, :, :]
gpmm_render_mask = np.tile(gpmm_render_mask, reps=(1, 1, 3))
path_image_origin = os.path.join(dic_image, name_image_pure + ".jpg")
image_origin = cv2.imread(path_image_origin)
gpmm_render_overlay_wo = inverse_affine_warp_overlay(
M_inv, image_origin, result_overlay_255, gpmm_render_mask)
gpmm_render_overlay_texture_wo = inverse_affine_warp_overlay(
M_inv, image_origin, result_overlayTex_255, gpmm_render_mask)
gpmm_render_overlay_gary_wo = inverse_affine_warp_overlay(
M_inv, image_origin, result_overlayGeo_255, gpmm_render_mask)
gpmm_render_overlay_illu_wo = inverse_affine_warp_overlay(
M_inv, image_origin, result_overlayLight_255, gpmm_render_mask)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayOrigin.jpg")
cv2.imwrite(path_image_save, gpmm_render_overlay_wo)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayTexOrigin.jpg")
# cv2.imwrite(path_image_save, gpmm_render_overlay_texture_wo)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayGeoOrigin.jpg")
cv2.imwrite(path_image_save, gpmm_render_overlay_gary_wo)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayLightOrigin.jpg")
# cv2.imwrite(path_image_save, gpmm_render_overlay_illu_wo)
if FLAGS.flag_main_save:
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayMain.jpg")
plt.imsave(path_image_save, result_overlayMain_255)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayTexMain.jpg")
#plt.imsave(path_image_gray_main_overlay, gpmm_render_overlay)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayGeoMain.jpg")
plt.imsave(path_image_save, result_overlayGeoMain_255)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayLightMain.jpg")
#cv2.imwrite(path_image_save, result_overlayLightMain_255)
if FLAGS.flag_overlay_save:
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlay.jpg")
plt.imsave(path_image_save, result_overlay_255)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayTex.jpg")
plt.imsave(path_image_save, result_overlayTex_255)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayGeo.jpg")
plt.imsave(path_image_save, result_overlayGeo_255)
path_image_save = os.path.join(FLAGS.output_dir, name_image_pure + "_overlayLight.jpg")
plt.imsave(path_image_save, result_overlayLight_255)