-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathgs_renderer.py
209 lines (177 loc) · 7.04 KB
/
gs_renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import math
import numpy as np
import torch
from diff_gaussian_rasterization import (
GaussianRasterizationSettings,
GaussianRasterizer,
)
from sh_utils import eval_sh, SH2RGB, RGB2SH
from gaussian_model import GaussianModel, BasicPointCloud
def getProjectionMatrix(znear, zfar, fovX, fovY):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
P = torch.zeros(4, 4)
z_sign = 1.0
P[0, 0] = 1 / tanHalfFovX
P[1, 1] = 1 / tanHalfFovY
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
class MiniCam:
def __init__(self, c2w, width, height, fovy, fovx, znear, zfar, gs_convention=True):
# c2w (pose) should be in NeRF convention.
self.image_width = width
self.image_height = height
self.FoVy = fovy
self.FoVx = fovx
self.znear = znear
self.zfar = zfar
w2c = np.linalg.inv(c2w)
if gs_convention:
# rectify...
w2c[1:3, :3] *= -1
w2c[:3, 3] *= -1
self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda()
self.projection_matrix = (
getProjectionMatrix(
znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy
)
.transpose(0, 1)
.cuda()
)
self.full_proj_transform = self.world_view_transform @ self.projection_matrix
self.camera_center = -torch.tensor(c2w[:3, 3]).cuda()
class Renderer:
def __init__(self, sh_degree=3, white_background=True, radius=1):
self.sh_degree = sh_degree
self.white_background = white_background
self.radius = radius
self.gaussians = GaussianModel(sh_degree)
self.bg_color = torch.tensor(
[1, 1, 1] if white_background else [0, 0, 0],
dtype=torch.float32,
device="cuda",
)
def initialize(self, input=None, num_pts=5000, radius=0.5):
# load checkpoint
if input is None:
# init from random point cloud
phis = np.random.random((num_pts,)) * 2 * np.pi
costheta = np.random.random((num_pts,)) * 2 - 1
thetas = np.arccos(costheta)
mu = np.random.random((num_pts,))
radius = radius * np.cbrt(mu)
x = radius * np.sin(thetas) * np.cos(phis)
y = radius * np.sin(thetas) * np.sin(phis)
z = radius * np.cos(thetas)
xyz = np.stack((x, y, z), axis=1)
# xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
shs = np.random.random((num_pts, 3)) / 255.0
pcd = BasicPointCloud(
points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))
)
self.gaussians.create_from_pcd(pcd, 10)
elif isinstance(input, BasicPointCloud):
# load from a provided pcd
self.gaussians.create_from_pcd(input, 1)
else:
# load from saved ply
self.gaussians.load_ply(input)
def render(
self,
viewpoint_camera,
scaling_modifier=1.0,
bg_color=None,
override_color=None,
compute_cov3D_python=False,
convert_SHs_python=False,
):
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
screenspace_points = (
torch.zeros_like(
self.gaussians.get_xyz,
dtype=self.gaussians.get_xyz.dtype,
requires_grad=True,
device="cuda",
)
+ 0
)
try:
screenspace_points.retain_grad()
except:
pass
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=self.bg_color if bg_color is None else bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform,
sh_degree=self.gaussians.active_sh_degree,
campos=viewpoint_camera.camera_center,
prefiltered=False,
debug=False,
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
means3D = self.gaussians.get_xyz
means2D = screenspace_points
opacity = self.gaussians.get_opacity
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
# scaling / rotation by the rasterizer.
scales = None
rotations = None
cov3D_precomp = None
if compute_cov3D_python:
cov3D_precomp = self.gaussians.get_covariance(scaling_modifier)
else:
scales = self.gaussians.get_scaling
rotations = self.gaussians.get_rotation
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
shs = None
colors_precomp = None
if colors_precomp is None:
if convert_SHs_python:
shs_view = self.gaussians.get_features.transpose(1, 2).view(
-1, 3, (self.gaussians.max_sh_degree + 1) ** 2
)
dir_pp = self.gaussians.get_xyz - viewpoint_camera.camera_center.repeat(
self.gaussians.get_features.shape[0], 1
)
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
sh2rgb = eval_sh(
self.gaussians.active_sh_degree, shs_view, dir_pp_normalized
)
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
else:
shs = self.gaussians.get_features
else:
colors_precomp = override_color
# Rasterize visible Gaussians to image, obtain their radii (on screen).
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
means3D=means3D,
means2D=means2D,
shs=shs,
colors_precomp=colors_precomp,
opacities=opacity,
scales=scales,
rotations=rotations,
cov3D_precomp=cov3D_precomp,
)
rendered_image = rendered_image.clamp(0, 1)
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
# They will be excluded from value updates used in the splitting criteria.
return {
"image": rendered_image,
"depth": rendered_depth,
"alpha": rendered_alpha,
"viewspace_points": screenspace_points,
"visibility_filter": radii > 0,
"radii": radii,
}