-
Notifications
You must be signed in to change notification settings - Fork 21
/
coco.py
195 lines (161 loc) · 7.22 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import sys
sys.path.insert(0, "data/coco/PythonAPI/")
import os
import json
import numpy as np
import pickle
from tqdm import tqdm
from db.detection import DETECTION
from config import system_configs
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
class MSCOCO(DETECTION):
def __init__(self, db_config, split):
super(MSCOCO, self).__init__(db_config)
data_dir = system_configs.data_dir
result_dir = system_configs.result_dir
cache_dir = system_configs.cache_dir
self._split = split
print ('cur split: ', self._split)
self._dataset = {
"trainval": "voc2012trainval",
"minival": "voc2007val",
"testdev": "voc2012test"}[self._split]
self._coco_dir = os.path.join(data_dir, "voc_coco_pattern")
self._label_dir = os.path.join(self._coco_dir, "annotations")
self._label_file = os.path.join(self._label_dir, "instances_{}.json")
self._label_file = self._label_file.format(self._dataset)
self._image_dir = os.path.join(self._coco_dir, "images", self._dataset)
self._image_file = os.path.join(self._image_dir, "{}")
self._data = "coco"
self._mean = np.array([0.40789654, 0.44719302, 0.47026115], dtype=np.float32)
self._std = np.array([0.28863828, 0.27408164, 0.27809835], dtype=np.float32)
self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571], dtype=np.float32)
self._eig_vec = np.array([
[-0.58752847, -0.69563484, 0.41340352],
[-0.5832747, 0.00994535, -0.81221408],
[-0.56089297, 0.71832671, 0.41158938]
], dtype=np.float32)
# bg == 0
self._cat_ids = [
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20
]
self._classes = {
ind + 1: cat_id for ind, cat_id in enumerate(self._cat_ids)
}
self._coco_to_class_map = {
value: key for key, value in self._classes.items()
} # len == 80
self._cache_file = os.path.join(cache_dir, "voc_coco_{}.pkl".format(self._dataset))
self._load_data()
self._db_inds = np.arange(len(self._image_ids))
self._load_coco_data()
def _load_data(self):
print("loading from cache file: {}".format(self._cache_file))
if not os.path.exists(self._cache_file):
print("No cache file found...")
self._extract_data()
with open(self._cache_file, "wb") as f:
pickle.dump([self._detections, self._image_ids], f)
else:
with open(self._cache_file, "rb") as f:
self._detections, self._image_ids = pickle.load(f)
def _load_coco_data(self):
print ('the anno file: ', self._label_file)
self._coco = COCO(self._label_file)
with open(self._label_file, "r") as f:
data = json.load(f)
coco_ids = self._coco.getImgIds()
eval_ids = {
self._coco.loadImgs(coco_id)[0]["file_name"]: coco_id
for coco_id in coco_ids
}
self._coco_categories = data["categories"]
self._coco_eval_ids = eval_ids
def class_name(self, cid):
cat_id = self._classes[cid]
cat = self._coco.loadCats([cat_id])[0]
return cat["name"]
def _extract_data(self):
self._coco = COCO(self._label_file)
print ('annotation json: ', self._label_file)
self._cat_ids = self._coco.getCatIds()
print (self._cat_ids)
coco_image_ids = self._coco.getImgIds()
self._image_ids = [
self._coco.loadImgs(img_id)[0]["file_name"]
for img_id in coco_image_ids
]
print ('training datasize: ', len(self._image_ids))
self._detections = {}
for ind, (coco_image_id, image_id) in enumerate(tqdm(zip(coco_image_ids, self._image_ids))):
image = self._coco.loadImgs(coco_image_id)[0]
# print ('image', image)
bboxes = []
categories = []
for cat_id in self._cat_ids:
# annotation_ids = self._coco.getAnnIds(imgIds=image["id"], catIds=cat_id)
# print ('ann_id:', annotation_ids)
# annotations = self._coco.loadAnns(annotation_ids)
# self._coco_to_class_map.get(key) # check the dict
# category = self._coco_to_class_map[cat_id]
# chenjia
annotation_ids = self._coco.getAnnIds(imgIds=image["id"], catIds=cat_id)
if len(annotation_ids) > 0:
# print('ann_id:', annotation_ids)
annotations = self._coco.loadAnns(annotation_ids)
# print ('annoations:', annotations)
# print ('cur cate: ', cat_id)
# self._coco_to_class_map.get(key) # check the dict
category = self._coco_to_class_map[cat_id]
for annotation in annotations:
bbox = np.array(annotation["bbox"])
bbox[[2, 3]] += bbox[[0, 1]]
bboxes.append(bbox)
categories.append(category)
bboxes = np.array(bboxes, dtype=float)
categories = np.array(categories, dtype=float)
if bboxes.size == 0 or categories.size == 0:
self._detections[image_id] = np.zeros((0, 5), dtype=np.float32)
else:
self._detections[image_id] = np.hstack((bboxes, categories[:, None]))
def detections(self, ind):
image_id = self._image_ids[ind]
detections = self._detections[image_id]
return detections.astype(float).copy()
def _to_float(self, x):
return float("{:.2f}".format(x))
def convert_to_coco(self, all_bboxes):
detections = []
for image_id in all_bboxes:
coco_id = self._coco_eval_ids[image_id]
for cls_ind in all_bboxes[image_id]:
category_id = self._classes[cls_ind]
for bbox in all_bboxes[image_id][cls_ind]:
bbox[2] -= bbox[0]
bbox[3] -= bbox[1]
score = bbox[4]
bbox = list(map(self._to_float, bbox[0:4]))
detection = {
"image_id": coco_id,
"category_id": category_id,
"bbox": bbox,
"score": float("{:.2f}".format(score))
}
detections.append(detection)
return detections
def evaluate(self, result_json, cls_ids, image_ids, gt_json=None):
if self._split == "testdev":
return None
coco = self._coco if gt_json is None else COCO(gt_json)
eval_ids = [self._coco_eval_ids[image_id] for image_id in image_ids]
cat_ids = [self._classes[cls_id] for cls_id in cls_ids]
coco_dets = coco.loadRes(result_json)
coco_eval = COCOeval(coco, coco_dets, "bbox")
coco_eval.params.imgIds = eval_ids
coco_eval.params.catIds = cat_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
return coco_eval.stats[0], coco_eval.stats[12:]