-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtest.py
73 lines (57 loc) · 2.33 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import torch
import numpy as np
from bark import SAMPLE_RATE, generate_audio, preload_models
from scipy.io.wavfile import write as write_wav
# Set environment variables for Bark
os.environ["SUNO_USE_SMALL_MODELS"] = "True"
os.environ["SUNO_OFFLOAD_CPU"] = "False" # We'll try to use GPU first
OUTPUT_DIR = "bark_voice_samples"
TEXT_PROMPT = "I don't know. [laughs] I mean, does it matter?"
def setup_gpu():
if torch.cuda.is_available():
print(f"GPU available: {torch.cuda.get_device_name(0)}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
torch.cuda.set_device(0)
return True
else:
print("No GPU available. Using CPU.")
os.environ["SUNO_OFFLOAD_CPU"] = "True"
return False
def generate_audio_with_voice(text, voice_preset):
try:
return generate_audio(text, history_prompt=voice_preset)
except Exception as e:
print(f"Error generating audio for voice {voice_preset}: {e}")
return None
def main():
print("Starting Bark voice comparison test...")
# Setup GPU
gpu_available = setup_gpu()
# Print PyTorch and CUDA versions
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA version: {torch.version.cuda}")
# Create output directory if it doesn't exist
os.makedirs(OUTPUT_DIR, exist_ok=True)
print("Preloading models...")
try:
preload_models()
except Exception as e:
print(f"Error preloading models: {e}")
return
print(f"Generating audio samples for voices 0-9 saying: '{TEXT_PROMPT}'")
for i in range(10):
voice_preset = f"v2/en_speaker_{i}"
print(f"Generating audio with voice preset: {voice_preset}")
audio_array = generate_audio_with_voice(TEXT_PROMPT, voice_preset)
if audio_array is not None:
output_file = os.path.join(OUTPUT_DIR, f"bark_output_voice_{i}.wav")
write_wav(output_file, SAMPLE_RATE, audio_array)
print(f"Audio saved to {output_file}")
else:
print(f"Failed to generate audio for voice {i}")
print(f"Test complete. Audio samples saved in the '{OUTPUT_DIR}' directory.")
if gpu_available:
print(f"GPU memory used: {torch.cuda.max_memory_allocated() / 1e9:.2f} GB")
if __name__ == "__main__":
main()