-
Notifications
You must be signed in to change notification settings - Fork 294
/
Copy pathtrain_model.py
118 lines (79 loc) · 3.7 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#-*-coding:utf8-*-
__author__ = '万壑'
from dataSet import DataSet
from keras.models import Sequential,load_model
from keras.layers import Dense,Activation,Convolution2D,MaxPooling2D,Flatten,Dropout
import numpy as np
#建立一个基于CNN的人脸识别模型
class Model(object):
FILE_PATH = "D:\myProject\model.h5" #模型进行存储和读取的地方
IMAGE_SIZE = 128 #模型接受的人脸图片一定得是128*128的
def __init__(self):
self.model = None
#读取实例化后的DataSet类作为进行训练的数据源
def read_trainData(self,dataset):
self.dataset = dataset
#建立一个CNN模型,一层卷积、一层池化、一层卷积、一层池化、抹平之后进行全链接、最后进行分类
def build_model(self):
self.model = Sequential()
self.model.add(
Convolution2D(
filters=32,
kernel_size=(5, 5),
padding='same',
dim_ordering='th',
input_shape=self.dataset.X_train.shape[1:]
)
)
self.model.add(Activation('relu'))
self.model.add(
MaxPooling2D(
pool_size=(2, 2),
strides=(2, 2),
padding='same'
)
)
self.model.add(Convolution2D(filters=64, kernel_size=(5, 5), padding='same'))
self.model.add(Activation('relu'))
self.model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
self.model.add(Flatten())
self.model.add(Dense(512))
self.model.add(Activation('relu'))
self.model.add(Dense(self.dataset.num_classes))
self.model.add(Activation('softmax'))
self.model.summary()
#进行模型训练的函数,具体的optimizer、loss可以进行不同选择
def train_model(self):
self.model.compile(
optimizer='adam', #有很多可选的optimizer,例如RMSprop,Adagrad,你也可以试试哪个好,我个人感觉差异不大
loss='categorical_crossentropy', #你可以选用squared_hinge作为loss看看哪个好
metrics=['accuracy'])
#epochs、batch_size为可调的参数,epochs为训练多少轮、batch_size为每次训练多少个样本
self.model.fit(self.dataset.X_train,self.dataset.Y_train,epochs=7,batch_size=20)
def evaluate_model(self):
print('\nTesting---------------')
loss, accuracy = self.model.evaluate(self.dataset.X_test, self.dataset.Y_test)
print('test loss;', loss)
print('test accuracy:', accuracy)
def save(self, file_path=FILE_PATH):
print('Model Saved.')
self.model.save(file_path)
def load(self, file_path=FILE_PATH):
print('Model Loaded.')
self.model = load_model(file_path)
#需要确保输入的img得是灰化之后(channel =1 )且 大小为IMAGE_SIZE的人脸图片
def predict(self,img):
img = img.reshape((1, 1, self.IMAGE_SIZE, self.IMAGE_SIZE))
img = img.astype('float32')
img = img/255.0
result = self.model.predict_proba(img) #测算一下该img属于某个label的概率
max_index = np.argmax(result) #找出概率最高的
return max_index,result[0][max_index] #第一个参数为概率最高的label的index,第二个参数为对应概率
if __name__ == '__main__':
dataset = DataSet('D:\myProject\pictures\dataset')
model = Model()
model.read_trainData(dataset)
model.build_model()
model.train_model()
model.evaluate_model()
model.save()