-
Notifications
You must be signed in to change notification settings - Fork 0
/
climate.R
229 lines (178 loc) · 5.98 KB
/
climate.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
## R code to manipulate and plot cliamte data for my four field sites ##
## aka another hot mess from Joe Endris ##
library(readr)
library(dplyr)
library(tidyverse)
library(ggplot2)
library(lubridate)
#read in Tennessee climate data
TN <- read_csv("data/Tennessee_climate.csv")
####################################
####Tennessee segment starts here###
####################################
str(TN) #view structure of data ##
## create column for julian date##
TN$julian_date <- yday(TN$DATE)
#omit NA in temperature recordings
TN<-TN[complete.cases(TN[,9]),]
## monthly mean low temp ##
## update this after creating julian dates ##
TN_TMAX <- TN %>%
group_by(year=lubridate::floor_date(DATE, "year")) %>%
summarise(total = max(TMAX))
## create graph for temps by month of year ##
TN_TMAX %>%
filter(year>1980) %>%
ggplot(aes(x = year, y = total)) +
geom_point(color = "grey") +
geom_smooth(stat="smooth",method="lm")+
labs(title = "Annual Highest Temperatures (°C)",
subtitle = "Clarksville, TN",
y= "Temperature °C",
x= "Year") + theme_bw(base_size = 15)
#number of days above 32.2
TN_32.2 <- TN %>%
group_by(year=lubridate::floor_date(DATE, "year")) %>%
summarise(n=sum(TMAX>32.2))
#plot number of days above 32.2
TN_32.2 %>%
filter(as.integer(year)>1980)%>%
filter(n>0)%>%
ggplot(aes(x = year, y = n)) +
geom_point(color = "grey") +
geom_smooth(method="lm")+
labs(title = "Number of Days Above 32°C",
subtitle = "Clarksville, TN",
y= "Number of Days",
x= "Year") + theme_bw(base_size = 15)
TN_32.2 %>%
filter(n>0)%>%
filter(year>1960)
##################################
####Alabama segment starts here###
##################################
str(AL) #view structure of data ##
## create column for julian date##
## trying to replicate https://stackoverflow.com/questions/21414847/convert-a-date-vector-into-julian-day-in-r##
AL <- mutate(AL, Julian=format(DATE,"%j"))
#omit NA in temperature recordings
AL<-AL[complete.cases(AL[,4]),]
## monthly mean low temp ##
## update this after creating julian dates ##
AL_TMAX <- AL %>%
group_by(year=lubridate::floor_date(DATE, "year")) %>%
summarise(total = max(TMAX))
###max temp by month May-Sep##
AL_monthly_TMAX <- AL %>%
## create graph for temps by month of year ##
AL_TMAX %>%
filter(year>1950) %>%
ggplot(aes(x = year, y = total)) +
geom_point(color = "grey") +
geom_smooth(stat="smooth",method="lm")+
labs(title = "Annual Highest Temperatures (°C)",
subtitle = "Tuscaloosa, AL",
y= "Temperature °C",
x= "Year") + theme_bw(base_size = 15)
#number of days above 32.2
AL_32.2 <- AL %>%
group_by(year=lubridate::floor_date(DATE, "year")) %>%
summarise(n=sum(TMAX>32.2))
#plot number of days above 32.2
AL_32.2 %>%
filter(as.integer(year)>1950)%>%
filter(n>0)%>%
ggplot(aes(x = year, y = n)) +
geom_point(color = "grey") +
geom_smooth(method="lm")+
labs(title = "Number of Days >32.2 (°C)",
subtitle = "Tuscaloosa, AL",
y= "Number of Days",
x= "Year") + theme_bw(base_size = 15)
AL_32.2 %>%
filter(n>0)%>%
filter(year>1960)
##################################
####Indiana segment starts here###
##################################
str(IN) #view structure of data ##
## create column for julian date##
## trying to replicate https://stackoverflow.com/questions/21414847/convert-a-date-vector-into-julian-day-in-r##
IN <- mutate(IN, Julian=format(DATE,"%j"))
#omit NA in temperature recordings
IN<-IN[complete.cases(IN[,4]),]
## monthly mean low temp ##
## update this after creating julian dates ##
IN_TMAX <- IN %>%
group_by(year=lubridate::floor_date(DATE, "year")) %>%
summarise(total = max(TMAX))
## create graph for temps by month of year ##
IN_TMAX %>%
filter(year>1980) %>%
ggplot(aes(x = year, y = total)) +
geom_point(color = "grey") +
geom_smooth(stat="smooth",method="lm")+
labs(title = "Annual Highest Temperatures (°C)",
subtitle = "Hoosier National Forest, IN",
y= "Temperature °C",
x= "Year") + theme_bw(base_size = 15)
#number of days above 32.2
IN_32.2 <- IN %>%
group_by(year=lubridate::floor_date(DATE, "year")) %>%
summarise(n=sum(TMAX>32.2))
#plot number of days above 32.2
IN_32.2 %>%
filter(as.integer(year)>1980)%>%
filter(n>0)%>%
ggplot(aes(x = year, y = n)) +
geom_point(color = "grey") +
geom_smooth(method="lm")+
labs(title = "Number of Days >32.2 (°C)",
subtitle = "Hoosier National Forest, IN",
y= "Number of Days",
x= "Year") + theme_bw(base_size = 15)
IN_32.2 %>%
filter(n>0)%>%
filter(year>1960)
##################################
####Michigan segment starts here###
##################################
str(MI) #view structure of data ##
## create column for julian date##
## trying to replicate https://stackoverflow.com/questions/21414847/convert-a-date-vector-into-julian-day-in-r##
MI <- mutate(MI, Julian=format(DATE,"%j"))
#omit NA in temperature recordings
MI<-MI[complete.cases(MI[,4]),]
## monthly mean low temp ##
## update this after creating julian dates ##
MI_TMAX <- MI %>%
group_by(year=lubridate::floor_date(DATE, "year")) %>%
summarise(total = max(TMAX))
## create graph for temps by month of year ##
MI_TMAX %>%
filter(year>1980) %>%
ggplot(aes(x = year, y = total)) +
geom_point(color = "grey") +
geom_smooth(stat="smooth",method="lm")+
labs(title = "Annual Highest Temperatures (°C)",
subtitle = "Chelsea, MI",
y= "Temperature °C",
x= "Year") + theme_bw(base_size = 15)
#number of days above 32.2
MI_32.2 <- MI %>%
group_by(year=lubridate::floor_date(DATE, "year")) %>%
summarise(n=sum(TMAX>32.2))
#plot number of days above 32.2
MI_32.2 %>%
filter(as.integer(year)>1980)%>%
filter(n>0)%>%
ggplot(aes(x = year, y = n)) +
geom_point(color = "grey") +
geom_smooth(method="lm")+
labs(title = "Number of Days >32.2 (°C)",
subtitle = "Chelsea, MI",
y= "Number of Days",
x= "Year") + theme_bw(base_size = 15)
MI_32.2 %>%
filter(n>0)%>%
filter(year>1960)