-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpairwise_pref_eval.py
524 lines (462 loc) · 20.8 KB
/
pairwise_pref_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
#!/usr/bin/python
'''This script computes several pairwise preference evaluation measures. All the
measures calculated here, as well as the format of the gold-standard preference
data to use as input are described in the publication:
B. Carterette, P.N. Bennett, O. Chapelle (2008). A Test Collection of Preference Judgments. In Proceedings of the SIGIR 2008 Beyond Binary Relevance: Preferences, Diversity, and Set-Level Judgments Workshop. Singapore. July, 2008.
http://research.microsoft.com/en-us/um/people/pauben/papers/sigir-2008-bbr-data-preference-overview.pdf
'''
from __future__ import division
from collections import defaultdict
from itertools import groupby, izip
from operator import itemgetter
from math import log
import sys
class PreferenceGraph(object):
'''A class that encapsulates all the relevance preference information for a
single query. This class supports weighted preferences, duplicate document judgements, as well as the ability to mark documents as BAD.'''
def __init__(self):
# a set of edges from PREFERRED -> NONPREFERRED
self.edges = set()
# a set of all docs that have been marked bad
self.bad_docs = set()
@property
def vertices(self):
'''The set of all documents in the preference graph. Note: this does not
include documents judged BAD.'''
return set(e[0] for e in self.edges) | set(e[1] for e in self.edges)
@property
def preferred(self):
'''The set of documents that have been preferred to any other document.'''
return set(e[0] for e in self.edges)
def __str__(self):
edges_str = '\n '.join( '%s -> %s (%0.2f)' % e for e in self.edges )
if self.bad_docs:
bad_docs_str = '\n '.join( self.bad_docs )
return 'Edges:\n %s\nBadDocs:\n %s' % (edges_str, bad_docs_str)
else:
return 'Edges:\n %s' % edges_str
def add_bad_doc(self, bad_doc):
'''Adds a document to the set of BAD docs. If the document has already been
assessed as preferred to any other document, it is silently ignored.'''
if bad_doc in self.preferred:
pass
else:
self.bad_docs.add(bad_doc)
def add_edge(self, from_vertex, to_vertex, weight = 1):
'''Adds an edge in the preference graph. If an edge is added where the
preferred document has previously been added as BAD, the edge is silently
ignored.'''
if from_vertex in self.bad_docs:
pass
else:
self.edges.add( (from_vertex, to_vertex, weight) )
def all_path_lengths(self, transitive=True):
'''Floyd-Warshall algorithm to find the distance of all minimum-length
paths between any two vetices. Returns a dictionary such that d[(i, j)]
is the shortest path between nodes i and j. If no such path exists, this
key won't be present in the dictionary. This algorithm runs in O(|V|**3).
If transitive=False, only explicit preferences are assumed, and the F-W
algorithm is not run.
Note: BAD documents are not included.'''
d = dict()
for (f, t, w) in self.edges:
d[(f, t)] = w
if not transitive:
return d
vertices = self.vertices
for k in vertices:
for i in vertices:
if i == k: continue
try:
d_i_k = d[(i,k)]
except KeyError:
# if i doesn't reach k, then no need to proceed
continue
for j in vertices:
if i == j or j == k: continue
d_k_j = d.get((k, j))
d_i_j = d.get((i, j))
# if k->j, we update d[(i,j)], otherwise leave untouched
if d_k_j is not None:
d[(i, j)] = min(d_i_j, d_i_k + d_k_j) if d_i_j else d_i_k + d_k_j
return d
@classmethod
def read_pref_file(cls, filename):
'''Reads a preference file and returns a dict of qid -> PreferenceGraph.
File should be in the format:
[qid] [doc1] [doc2] [preference]
where the [preference] value indicates which document is preferred or BAD.
The format is described in the above citation. Briefly:
[preference] == 2: doc2 = BAD, doc1 must be "NA"
== -2: doc1 = BAD, doc2 must be "NA"
== 1: doc2 preferred to doc1
== -1: doc1 preferred to doc2
== 0: doc1 and doc2 duplicates.
'''
preferences = defaultdict(cls)
for line in open(filename):
try:
qid, from_doc, to_doc, pref = line.lower().strip().split()
except ValueError, e:
raise ValueError('Can\'t parse line: \'%s\', %s' % \
(line.strip(), str(e)))
pref = int(pref)
if pref == -1:
preferences[qid].add_edge(from_doc, to_doc, 1)
elif pref == 1:
preferences[qid].add_edge(to_doc, from_doc, 1)
elif pref == 0:
# if duplicates, add a zero-weight edge in both directions
preferences[qid].add_edge(from_doc, to_doc, 0)
preferences[qid].add_edge(to_doc, from_doc, 0)
elif pref == -2:
if to_doc.lower() != 'na':
raise ValueError('OTHER doc in bad judgements must be "NA"')
preferences[qid].add_bad_doc(from_doc)
elif pref == 2:
if from_doc.lower() != 'na':
raise ValueError('OTHER doc in bad judgements must be "NA"')
preferences[qid].add_bad_doc(to_doc)
else:
raise ValueError('Can\'t understand preference: %d' % pref)
return preferences
class ResultPreferences(object):
'''Encapsulates all the preference data associated with retrieval results.
This class handles mapping document ids's in the PreferenceGraph to document
ranks.'''
UNRANKED = sys.maxint
def __init__(self, ordered_docs, pref_graph, transitive=True):
all_prefs = q_prefs.all_path_lengths(transitive=transitive)
doc_rank = dict( (doc, i+1) for (i, doc) in enumerate(ordered_docs) )
# the preferences (f, t, w) where (f, t) are ranks, (w) is a weight
# f or t can be UNRANKED if they aren't ranked
self.pref_ranks = [ \
(doc_rank.get(f, self.UNRANKED), doc_rank.get(t, self.UNRANKED)) \
for ( (f, t), w) in all_prefs.iteritems() if w > 0]
self.count_preferred_unranked = len(set(f for ((f, t), w) \
in all_prefs.iteritems() \
if f not in doc_rank))
self.duplicates = [ \
(doc_rank.get(f, self.UNRANKED), doc_rank.get(t, self.UNRANKED)) \
for ( (f, t), w) in all_prefs.iteritems() if w == 0]
# the ranks of judged bad documents. can be UNRANKED if they aren't ranked
self.bad_docs_ranks = sorted(doc_rank.get(d, self.UNRANKED) \
for d in q_prefs.bad_docs)
self.count_bad_unranked = len(set(d for d in q_prefs.bad_docs \
if d not in doc_rank))
# generate preference pairs between all preferred docs & all bad docs
# ranks of preferred ranked docs
self.preferred_ranks = sorted(set(f for (f, t) in self.pref_ranks \
if f != self.UNRANKED))
# add pairs of ranked preferred w/ unranked BAD
self.pref_ranks = self.pref_ranks + \
[(f, t) for f in self.preferred_ranks for t in self.bad_docs_ranks]
# num. of pairs of preferred-bad docs that are both unranked
count_both_unranked = self.count_bad_unranked*self.count_preferred_unranked
# add pairs of unranked preferred, unranked BAD
self.pref_ranks = self.pref_ranks + \
[(self.UNRANKED, self.UNRANKED)]*count_both_unranked
def preferred_docs_above(self, k):
'''Returns the rank of preferred documents ranked at k or above. If k < 0,
returns ranks of preferred documents ranked anywhere.'''
if k < 0:
return sorted(set(f for (f, t) in self.pref_ranks if f < self.UNRANKED))
else:
return sorted(set(f for (f, t) in self.pref_ranks if f <= k))
def bad_docs_above(self, k):
'''Returns the ranks of bad documents ranked above k. If k < 0, returns
the ranks of all bad documents retrieved.'''
if k < 0:
return [d for d in self.bad_docs_ranks if d < self.UNRANKED]
else:
return [d for d in self.bad_docs_ranks if d <= k]
def pref_pairs_above(self, k):
'''Returns the list of preference pairs where either document is above
or equal to rank k. If k < 0, returns all preference pairs where either
document is ranked.'''
if k < 0:
return [(f, t) for (f, t) in self.pref_ranks \
if f < self.UNRANKED or t < self.UNRANKED]
else:
return [(f, t) for (f, t) in self.pref_ranks if f <= k or t <= k]
def __str__(self):
ranks = set(f for (f, t) in self.pref_ranks) | \
set(t for (f, t) in self.pref_ranks)
if len(ranks) == 0: return 'NA'
if self.UNRANKED in ranks: ranks.remove(self.UNRANKED)
ranks = sorted(ranks)
preferred_to_non = set( self.pref_ranks )
# build a matrix M of rank x rank w/ each cell >, <, =, B
m = []
for (i, ri) in enumerate(ranks):
r = []
for rj in ranks:
if ri == rj:
r.append('#') # diagonal == '#'
elif (ri, rj) in preferred_to_non:
r.append('>') # row preferred to column
elif (rj, ri) in preferred_to_non:
r.append('<') # column preferred to row
elif (ri, rj) in self.duplicates or (rj, ri) in self.duplicates:
r.append('=') # duplicates
else:
r.append(' ') # no information
# add unranked info
# cols: INF< INF> INF=
inf_gt = sum(1 for (f, t) in self.pref_ranks \
if f == ri and t == self.UNRANKED)
inf_lt = sum(1 for (f, t) in self.pref_ranks \
if t == ri and f == self.UNRANKED)
inf_eq = sum(1 for (f, t) in self.duplicates \
if (f == ri and t == self.UNRANKED) or \
(t == ri and f == self.UNRANKED))
r = r + [str(inf_lt), str(inf_gt), str(inf_eq)]
m.append(r)
headers = [str(x) for x in ranks] + ['INF<', 'INF>', 'INF=']
cell_widths = [len(x)+1 for x in headers]
s = ' '*max(cell_widths) + \
''.join(x.ljust(w) for (x, w) in izip(headers, cell_widths))
for i in xrange(len(headers[:-3])):
r = ranks[i]
h = headers[i]
si = '%s%s' % (h.ljust(max(cell_widths)),
''.join(x.ljust(w) for (x, w) in izip(m[i], cell_widths)))
s = '\n'.join((s, si))
# add a row showing INF-INF preferences
inf_inf_prefs = sum(f == t == self.UNRANKED for (f, t) in self.pref_ranks)
s = '%s\n%s' % (s, 'INF<INF: %d'.rjust(sum(cell_widths)) % inf_inf_prefs)
return s
######### THE FOLLOWING FUNCTIONS ARE THE EVALUATION MEASURES ###########
def count_correct(rank_prefs, rank = -1):
'''Counts the number of correct pairs at or above rank. If rank < 0, counts
correct pairs retrieved at any rank.'''
if rank < 0:
return sum(1 for (f, t) in rank_prefs.pref_ranks \
if f < t and f < rank_prefs.UNRANKED)
else:
return sum(1 for (f, t) in rank_prefs.pref_ranks if f < t and f <= rank)
def count_incorrect(rank_prefs, rank = -1):
'''Counts the number of incorrect pairs at or above rank. If rank < 0, counts
incorrect pairs retrieved at any rank.'''
if rank < 0:
return sum(1 for (f, t) in rank_prefs.pref_ranks \
if f > t and t < rank_prefs.UNRANKED)
else:
return sum(1 for (f, t) in rank_prefs.pref_ranks if f > t and t <= rank)
def num_preferred(rank_prefs):
'''Returns the number of documents that have ever been preferred to another
document, whether or not those documents were retrieved'''
return len(rank_prefs.preferred_docs_above(-1)) + \
rank_prefs.count_preferred_unranked
def num_preferred_unranked(rank_prefs):
'''Returns the number of documents that have ever been preferred to another
document and were not retrieved'''
return rank_prefs.count_preferred_unranked
def num_bad(rank_prefs):
'''Returns the number of documents judged bad, whether or not those documents
were retrieved'''
return len(rank_prefs.bad_docs_above(-1)) + \
rank_prefs.count_bad_unranked
def num_pref(rank_prefs):
return len(rank_prefs.pref_ranks)
def num_pref_ranked(k):
'''Returns a function to count the number of judged preferences where either
document is present in the top k ranked documents. If k < 0, counts judged
preferences in all retrieved documents. Includes implied preference between
preferred & bad documents'''
def f(rank_prefs):
return len(rank_prefs.pref_pairs_above(k))
return f
def num_pref_correct(k):
'''Returns a function to count the number of judged preferences correctly
ordered present in the top k ranked documents.'''
def f(rank_prefs):
return count_correct(rank_prefs, k)
return f
def ppref(k):
'''Returns function calculating ppref at the given cutoff (k)'''
def f(rank_prefs):
# total prefs @ k
n_prefs = num_pref_ranked(k)(rank_prefs)
if n_prefs == 0: return 0
n_prefs_correct = num_pref_correct(k)(rank_prefs)
precision = n_prefs_correct / n_prefs
return precision
return f
def rpref(k):
'''Returns function calculating rpref at the given cutoff (k)'''
def f(rank_prefs):
# total prefs anywhere
n_prefs = len(rank_prefs.pref_ranks)
if n_prefs == 0: return 0
n_prefs_correct = num_pref_correct(k)(rank_prefs)
recall = n_prefs_correct / n_prefs
return recall
return f
def fpref(k, beta = 1):
'''Returns function calculating rpref/ppref F measure at the given cutoff'''
def f(rank_prefs):
ppref_k = ppref(k)(rank_prefs)
rpref_k = rpref(k)(rank_prefs)
if ppref_k == 0 and rpref_k == 0:
return 0
return (1 + beta**2) * (ppref_k * rpref_k) / (beta**2 * ppref_k + rpref_k)
return f
def appref(rank_prefs):
'''Calculates the APpref, which is ppref@k averaged over the ranks of all the
documents that have ever been preferred, including the the UNRANKED
preferred documents.
Note: This calculation differs from the description of APpref in the above
citation, but tends to produce more sensible results when preferred documents
are not retrieved by the system.'''
total_preferred = num_preferred(rank_prefs)
if total_preferred == 0:
return 0
ranks_to_eval = rank_prefs.preferred_ranks
ppref_sum = sum(ppref(i)(rank_prefs) for i in rank_prefs.preferred_ranks) + \
ppref(rank_prefs.UNRANKED)(rank_prefs) * \
rank_prefs.count_preferred_unranked
return ppref_sum / num_preferred(rank_prefs)
def ppref_max(rank_prefs):
'''Calculates the maximum ppref over all ranks'''
if rank_prefs.preferred_ranks:
return max(ppref(k)(rank_prefs) for k in rank_prefs.preferred_ranks)
else:
return 0.0
def rpref_max(rank_prefs):
'''Calculates the maximum rpref over all ranks'''
if rank_prefs.preferred_ranks:
return max(rpref(k)(rank_prefs) for k in rank_prefs.preferred_ranks)
else:
return 0.0
def wpref(k, w_func = None):
'''Returns a function for calculating wpref@k. assumes uniform preference degree
(pref_ij == 1)'''
def f(rank_prefs):
if w_func is None:
weight = lambda f, t: 1.0 / (log(f, 2)+1) if f < t else 0.0
else:
weight = w_func
# iterate through the pref_ranks & tally up the wpref values. this includes
# bad documents
return sum(weight(f, t) for (f, t) in rank_prefs.pref_ranks \
if f <= k or t <= k)
return f
def nwpref(k):
'''Returns a function calculating normalized wpref@k. Normalization assumes a
perfect ranking -- i.e. every preference observed is correctly ranked.
TODO(jelsas): this is probably not the correct way to normalize, but works
for now'''
def f(rank_prefs):
unnorm = wpref(k)(rank_prefs)
# to normalize the wpref values, we create a weighting function that always
# counts a document pair regardless of the correct ordering of the docs.
# TODO: this doesn't really reflect a "perfect" ordering at rank k
norm_weight = lambda f, t: 1.0 / (log(min(f, t), 2)+1)
norm = wpref(k, w_func = norm_weight)(rank_prefs)
if norm == 0:
assert unnorm == 0, 'wpref norm = 0, but wpref != 0'
return 0
else:
return unnorm/norm
return f
def rrpref(rank_prefs):
'''Reciprocal Rank pref. 1/rank of first correctly ordered preferred doc.'''
correctly_ranked = [f for (f, t) in rank_prefs.pref_ranks if f < t]
if correctly_ranked:
return 1.0 / min(correctly_ranked)
else:
return 0.0
######### MAIN: #########################
if __name__=='__main__':
from optparse import OptionParser
import sys
parser = OptionParser(usage='usage: %prog [options] pref_file results_file')
parser.add_option('-q', action='store_true', dest='per_q',
help='print per-query statistics')
parser.add_option('-v', action='store_true', dest='verbose',
help='print lots of debugging info')
parser.add_option('-i', action='store_true', dest='intransitive',
default=False,
help='Do not assume transitive preferences')
(options, args) = parser.parse_args()
try:
prefs_file, results_file = args
except ValueError, e:
parser.error(e)
try:
prefs = PreferenceGraph.read_pref_file(prefs_file)
except ValueError, e:
parser.error('Error parsing pref_file \'%s\'\n%s' % (prefs_file, str(e)))
except IOError, e:
parser.error('Error reading pref_file \'%s\'\n%s' % (prefs_file, str(e)))
# All the evaluation measures we calculate.
# A sequence of tuples (name, function, format)
eval_measures = (
('num_pref_ranked',num_pref_ranked(-1),'%d'),
('num_pref_total', num_pref, '%d'),
('num_preferred', num_preferred, '%d'),
('num_preferred_unrk',num_preferred_unranked,'%d'),
('num_bad', num_bad, '%d'),
('rrpref', rrpref, '%0.4f'),
('ppref1', ppref(1), '%0.4f'),
('ppref5', ppref(5), '%0.4f'),
('ppref10', ppref(10), '%0.4f'),
('ppref25', ppref(25), '%0.4f'),
('ppref50', ppref(50), '%0.4f'),
('pprefMax', ppref_max, '%0.4f'),
('rpref1', rpref(1), '%0.4f'),
('rpref5', rpref(5), '%0.4f'),
('rpref10', rpref(10), '%0.4f'),
('rpref25', rpref(25), '%0.4f'),
('rpref50', rpref(50), '%0.4f'),
('rprefMax', rpref_max, '%0.4f'),
('fpref1', fpref(1), '%0.4f'),
('fpref5', fpref(5), '%0.4f'),
('fpref10', fpref(10), '%0.4f'),
('wpref1', wpref(1), '%0.4f'),
('wpref5', wpref(5), '%0.4f'),
('wpref10', wpref(10), '%0.4f'),
('nwpref1', nwpref(1), '%0.4f'),
('nwpref5', nwpref(5), '%0.4f'),
('nwpref10', nwpref(10), '%0.4f'),
('APpref' , appref, '%0.4f'),
)
label_len = max(len(x[0]) for x in eval_measures)+2
def read_results_file(filename):
'''Reads a TREC format results file. This function is a generator yielding
the tuples (qid, [list of docs in rank order]).'''
def parse_line(line):
try:
qid, _, docname, _, score, _ = line.lower().strip().split(None, 5)
except ValueError, e:
parser.error('Error parsing results_file %s\nCan\'t parse line: \'%s\', %s' % \
(filename, line.strip(), str(e)))
return (qid, docname, float(score))
input = (parse_line(line) for line in open(filename))
for (q, q_data) in groupby(input, itemgetter(0)):
q_data = sorted(q_data, key=itemgetter(2), reverse=True)
yield (q, [d for (q, d, s) in q_data])
summary_measures = defaultdict(float)
num_q = 0
for (q, docs) in read_results_file(results_file):
q_prefs = prefs[q]
if options.verbose:
print 'Query: %s' % q
print q_prefs
if len(q_prefs.edges) == 0 and len(q_prefs.bad_docs) == 0:
if options.verbose: print 'skipping q', q, 'no edges'
continue
num_q += 1
r_pref = ResultPreferences(docs, q_prefs, not options.intransitive)
if options.per_q and options.verbose: print r_pref
for (eval_name, eval_f, fmt) in eval_measures:
m = eval_f(r_pref)
if options.per_q:
print '%s\t%s\t%s' % (eval_name.ljust(label_len), q, fmt % m)
summary_measures[eval_name] += m
print '%s\tall\t%d' % ('num_q'.ljust(label_len), num_q)
if num_q > 0:
for (eval_name, _, fmt) in eval_measures:
m = summary_measures[eval_name]
print 'm%s\tall\t%0.04f' % (eval_name.ljust(label_len), (m / num_q) )