-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathmax-consecutive-ones-ii.js
82 lines (71 loc) · 1.71 KB
/
max-consecutive-ones-ii.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
/**
* Max Consecutive Ones II
*
* Given a binary array, find the maximum number of consecutive 1s in this array if you can flip at most one 0.
*
* Example 1:
* Input: [1,0,1,1,0]
* Output: 4
*
* Explanation:
* Flip the first zero will get the the maximum number of consecutive 1s.
* After flipping, the maximum number of consecutive 1s is 4.
*
* Note:
*
* The input array will only contain 0 and 1.
* The length of input array is a positive integer and will not exceed 10,000
*
* Follow up:
* What if the input numbers come in one by one as an infinite stream?
* In other words, you can't store all * numbers coming from the stream as it's too large
* to hold in memory. Could you solve it efficiently?
*
* Solution:
* The idea is to keep a window [l, h] that contains at most k zero
*/
/**
* Solution I - Time: O(n) Space: O(1)
*
* @param {number[]} nums
* @return {number}
*/
const findMaxConsecutiveOnes_I = nums => {
let max = 0;
let zero = 0;
let k = 1; // flip at most k zero
for (let l = 0, h = 0; h < nums.length; h++) {
if (nums[h] == 0) {
zero++;
}
while (zero > k) {
if (nums[l++] == 0) {
zero--;
}
}
max = Math.max(max, h - l + 1);
}
return max;
};
/**
* Follow up - Time: O(n) Space: O(k)
*
* @param {number[]} nums
* @return {number}
*/
const findMaxConsecutiveOnes_II = nums => {
let max = 0;
let k = 1; // flip at most k zero
let zero = [];
for (let l = 0, h = 0; h < nums.length; h++) {
if (nums[h] === 0) {
zero.push(h);
}
if (zero.length > k) {
l = zero.shift() + 1;
}
max = Math.max(max, h - l + 1);
}
return max;
};
export { findMaxConsecutiveOnes_I, findMaxConsecutiveOnes_II };