-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathselected_features_model.py
156 lines (104 loc) · 3.66 KB
/
selected_features_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#Assignment-2_GNR652
#18D070050
#import_libraries
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
#################### Function Definitions ########################
def CostFunction(X,Y,B):
m = len(X)
z=-1*np.dot(X,B)
h=1/(1+np.exp(z))
cost = Y*(np.log(h))+ (1-Y)*(np.log(1-h+1e-5))
J= - (1/m)*(cost.sum())
return J
def Logistic_training_model(X,Y,learning_rate,iterations):
B = np.zeros([(len(X[0])),1])
m = len(X)
costHistory = np.zeros([iterations,1])
for i in range(iterations):
costHistory[i]= CostFunction(X,Y,B)
z=-1*np.dot(X,B)
h=1/(1+np.exp(z))
gradient = ((X.transpose())@(Y-h))/m
B=B+learning_rate*gradient
return costHistory,B
def standardize(x):
mean = np.sum(x)/len(x)
stdev = np.sqrt(np.sum((x-mean)*(x-mean))/len(x))
m = (x-mean)/stdev
return m
def cor(x,y):
mux = (np.sum(x))/len(x)
muy = (np.sum(y))/len(y)
num = np.sum((x-mux)*(y-muy))
denx = np.sum((x-mux)*(x-mux))
deny = np.sum((y-muy)*(y -muy))
stdx = np.sqrt(denx)+1e-20
stdy= np.sqrt(deny)+1e-20
ret = num/np.sqrt(denx*deny)
return abs(ret)
dataset = pd.read_csv('FlightDelays.csv')
####################PRE-PROCESSING DATA#############################
dataset.drop(['FL_DATE','TAIL_NUM'],axis=1,inplace=True)
label_encoder = LabelEncoder()
dataset['Flight Status'] = label_encoder.fit_transform(dataset['Flight Status'])
dataset = pd.get_dummies(data=dataset, columns = ['CARRIER','DEST','ORIGIN','DAY_WEEK','FL_NUM','DAY_OF_MONTH'])
####################################################################
Y = (dataset['Flight Status'].values).reshape(2201,1)
dataset.drop(['Flight Status'],axis=1,inplace=True)
X=dataset[:].values.astype(float)
X0 = np.ones([len(X),1])
X[:,0] = ((X[:,0]%100) + (((X[:,0]-(X[:,0]%100))/100)*60))
X[:,0] = standardize(X[:,0])
X[:,1] = ((X[:,1]%100) + (((X[:,1]-(X[:,1]%100))/100)*60))
X[:,1] = standardize(X[:,1])
################# Feature_Selection ######################################
corr=np.zeros(len(X[0]))
for i in range(len(X[0])):
corr[i]= cor((X[:,i]).reshape(2201,1),Y)
ypos=np.arange(len(corr))
for i in range(len(X[0])):
if abs(corr[i]) <= 0.1:
corr[i]=0
else :
corr[i]=1
X_del=np.ones([2201,1])
for i in range(len(X[0])):
if corr[i]==1:
X_del=np.hstack((X_del,(X[:,i]).reshape(2201,1)))
########################## Splitting_Dataset ###############################
X_train, X_test, y_train, y_test = train_test_split(X_del, Y, test_size = 0.4)
######################### Training_of_Model ##################################
B = np.zeros([(len(X_train[0])),1])
icos = CostFunction(X_train,y_train,B)
costH,newB = Logistic_training_model(X_train,y_train,1,30000)
plt.plot(costH)
plt.show()
######################### Classification ######################################
Z=-1*np.dot(X_test,newB)
h=1/(1+np.exp(Z))
for i in range(h.shape[0]):
if h[i]>0.5:
h[i] = 1
else:
h[i] = 0
######################### Accuracy_calculation ################################
TP=FN=FP=TN=0
for i in range(len(y_test)) :
if (y_test[i]==1):
if (h[i]==1):
TP=TP+1
else:
FN=FN+1
else :
if(h[i]==0):
TN=TN+1
else:
FP=FP+1
Accuracy=(TP+TN)/(TP+TN+FP+FN)
error=(FP+FN)/(TP+TN+FP+FN)
print("Accuracy = ",Accuracy)
print("Error = ",error)