-
Notifications
You must be signed in to change notification settings - Fork 332
/
Copy pathstacked_autoencoder.py
192 lines (145 loc) · 6.5 KB
/
stacked_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import numpy as np
import scipy.sparse
import softmax
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def sigmoid_prime(x):
return sigmoid(x) * (1 - sigmoid(x))
def stack2params(stack):
"""
Converts a "stack" structure into a flattened parameter vector and also
stores the network configuration. This is useful when working with
optimization toolboxes such as minFunc.
[params, netconfig] = stack2params(stack)
stack - the stack structure, where stack{1}.w = weights of first layer
stack{1}.b = weights of first layer
stack{2}.w = weights of second layer
stack{2}.b = weights of second layer
... etc.
:param stack: the stack structure
:return: params: flattened parameter vector
:return: net_config: aux. variable with network structure
"""
params = []
for s in stack:
params.append(s['w'].flatten())
params.append(s['b'].flatten())
params = np.concatenate(params)
net_config = {}
if len(stack) == 0:
net_config['input_size'] = 0
net_config['layer_sizes'] = []
else:
net_config['input_size'] = stack[0]['w'].shape[1]
net_config['layer_sizes'] = []
for s in stack:
net_config['layer_sizes'].append(s['w'].shape[0])
return params, net_config
def params2stack(params, net_config):
"""
Converts a flattened parameter vector into a nice "stack" structure
for us to work with. This is useful when you're building multilayer
networks.
stack = params2stack(params, netconfig)
:param params: flattened parameter vector
:param net_config: aux. variable containing network config.
:return: stack structure (see above)
"""
# Map the params (a vector into a stack of weights)
depth = len(net_config['layer_sizes'])
stack = [dict() for i in range(depth)]
prev_layer_size = net_config['input_size']
current_pos = 0
for i in range(depth):
# Extract weights
wlen = prev_layer_size * net_config['layer_sizes'][i]
stack[i]['w'] = params[current_pos:current_pos + wlen].reshape(net_config['layer_sizes'][i], prev_layer_size)
current_pos = current_pos + wlen
# Extract bias
blen = net_config['layer_sizes'][i]
stack[i]['b'] = params[current_pos:current_pos + blen]
current_pos = current_pos + blen
# Set previous layer size
prev_layer_size = net_config['layer_sizes'][i]
return stack
def stacked_autoencoder_cost(theta, input_size, hidden_size, num_classes,
net_config, lambda_, data, labels):
"""
Takes a trained softmax_theta and a training data set with labels
and returns cost and gradient using stacked autoencoder model.
Used only for finetuning
:param theta: trained weights from the autoencoder
:param input_size: the number of input units
:param hidden_size: the number of hidden units (at the layer before softmax)
:param num_classes: number of categories
:param net_config: network configuration of the stack
:param lambda_: weight regularization penalty
:param data: matrix containing data as columns. data[:,i-1] is i-th example
:param labels: vector containing labels, labels[i-1] is the label for i-th example
"""
## Unroll softmax_theta parameter
# We first extract the part which compute the softmax gradient
softmax_theta = theta[0:hidden_size * num_classes].reshape(num_classes, hidden_size)
# Extract out the "stack"
stack = params2stack(theta[hidden_size * num_classes:], net_config)
m = data.shape[1]
# Forward propagation
a = [data]
z = [np.array(0)] # Dummy value
for s in stack:
z.append(s['w'].dot(a[-1]) + np.tile(s['b'], (m, 1)).transpose())
a.append(sigmoid(z[-1]))
# Softmax
prod = softmax_theta.dot(a[-1])
prod = prod - np.max(prod)
prob = np.exp(prod) / np.sum(np.exp(prod), axis=0)
indicator = scipy.sparse.csr_matrix((np.ones(m), (labels, np.array(range(m)))))
indicator = np.array(indicator.todense())
cost = (-1 / float(m)) * np.sum(indicator * np.log(prob)) + (lambda_ / 2) * np.sum(softmax_theta * softmax_theta)
softmax_grad = (-1 / float(m)) * (indicator - prob).dot(a[-1].transpose()) + lambda_ * softmax_theta
# Backprop
# Compute partial of cost (J) w.r.t to outputs of last layer (before softmax)
softmax_grad_a = softmax_theta.transpose().dot(indicator - prob)
# Compute deltas
delta = [-softmax_grad_a * sigmoid_prime(z[-1])]
for i in reversed(range(len(stack))):
d = stack[i]['w'].transpose().dot(delta[0]) * sigmoid_prime(z[i])
delta.insert(0, d)
# Compute gradients
stack_grad = [dict() for i in range(len(stack))]
for i in range(len(stack_grad)):
stack_grad[i]['w'] = delta[i + 1].dot(a[i].transpose()) / m
stack_grad[i]['b'] = np.sum(delta[i + 1], axis=1) / m
grad_params, net_config = stack2params(stack_grad)
grad = np.concatenate((softmax_grad.flatten(), grad_params))
return cost, grad
def stacked_autoencoder_predict(theta, input_size, hidden_size, num_classes, net_config, data):
"""
Takes a trained theta and a test data set,
and returns the predicted labels for each example
:param theta: trained weights from the autoencoder
:param input_size: the number of input units
:param hidden_size: the number of hidden units at the layer before softmax
:param num_classes: the number of categories
:param netconfig: network configuration of the stack
:param data: the matrix containing the training data as columsn. data[:,i-1] is the i-th training example
:return:
Your code should produce the prediction matrix
pred, where pred(i) is argmax_c P(y(c) | x(i)).
"""
## Unroll theta parameter
# We first extract the part which compute the softmax gradient
softmax_theta = theta[0:hidden_size * num_classes].reshape(num_classes, hidden_size)
# Extract out the "stack"
stack = params2stack(theta[hidden_size * num_classes:], net_config)
m = data.shape[1]
# Compute predictions
a = [data]
z = [np.array(0)] # Dummy value
# Sparse Autoencoder Computation
for s in stack:
z.append(s['w'].dot(a[-1]) + np.tile(s['b'], (m, 1)).transpose())
a.append(sigmoid(z[-1]))
# Softmax
pred = softmax.softmax_predict((softmax_theta, hidden_size, num_classes), a[-1])
return pred