-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_spokencoco.py
55 lines (48 loc) · 1.85 KB
/
run_spokencoco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Author: David Harwath
import argparse
import os
import pickle
import time
from steps import trainer
from models import fast_vgs, w2v2_model
from datasets import spokencoco_dataset, libri_dataset
from logging import getLogger
logger = getLogger(__name__)
logger.info("I am process %s, running on %s: starting (%s)" % (
os.getpid(), os.uname()[1], time.asctime()))
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--resume", action="store_true", dest="resume", help="load from exp_dir if True")
parser.add_argument("--validate", action="store_true", default=False, help="temp, if call trainer_variants rather than trainer")
parser.add_argument("--test", action="store_true", default=False, help="test the model on test set")
trainer.Trainer.add_args(parser)
w2v2_model.Wav2Vec2Model_cls.add_args(parser)
fast_vgs.DualEncoder.add_args(parser)
spokencoco_dataset.ImageCaptionDataset.add_args(parser)
libri_dataset.LibriDataset.add_args(parser)
args = parser.parse_args()
os.makedirs(args.exp_dir, exist_ok=True)
if args.resume or args.validate:
resume = args.resume
assert(bool(args.exp_dir))
with open("%s/args.pkl" % args.exp_dir, "rb") as f:
old_args = pickle.load(f)
new_args = vars(args)
old_args = vars(old_args)
for key in new_args:
if key not in old_args or old_args[key] != new_args[key]:
old_args[key] = new_args[key]
args = argparse.Namespace(**old_args)
args.resume = resume
else:
print("\nexp_dir: %s" % args.exp_dir)
with open("%s/args.pkl" % args.exp_dir, "wb") as f:
pickle.dump(args, f)
args.places = False
args.flickr8k = False
logger.info(args)
if args.validate:
my_trainer = trainer.Trainer(args)
my_trainer.validate_one_to_many(hide_progress=False)
else:
my_trainer = trainer.Trainer(args)
my_trainer.train()