-
Notifications
You must be signed in to change notification settings - Fork 0
/
DNNClassifier.py
226 lines (180 loc) · 7.21 KB
/
DNNClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DNNRegressor with custom input_fn for Housing dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
import pandas as pd
import tensorflow as tf
import numpy as np
tf.logging.set_verbosity(tf.logging.INFO)
FEATURES = []
for i in range(0,88):
FEATURES.append("feature" + str(i))
WITH_WEIGHT = FEATURES.copy()
WITH_WEIGHT.append("weight")
COLUMNS=WITH_WEIGHT.copy()
COLUMNS.append("label")
LABEL = "label"
def input_fn(data_set):
feature_cols = {k: tf.constant(data_set[k].values) for k in WITH_WEIGHT}
feature_cols["weight"] = tf.reshape(feature_cols["weight"], shape=(-1, 1))
labels = tf.constant(data_set[LABEL].values)
labels = tf.reshape(labels, shape=(-1, 1))
return feature_cols, labels
def original_input_fn(data_set):
feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES}
#labels = tf.constant(data_set[LABEL].values)
labels = None
return feature_cols, labels
def main():
# Load datasets
PRED_DIR="../data/stock_test_data_20170901.csv"
TRAIN_DIR = "../data/stock_train_data_20170901.csv"
training_set = pd.read_csv(TRAIN_DIR, skipinitialspace=True,
skiprows=0, usecols=COLUMNS)
#test_set = pd.read_csv("./EPL_1617_ALL.csv", skipinitialspace=True, skiprows=0, usecols=COLUMNS)
prediction_set = pd.read_csv(PRED_DIR, skipinitialspace=True,
skiprows=0, usecols=FEATURES)
# Feature cols
feature_cols = [tf.contrib.layers.real_valued_column(k)
for k in FEATURES]
# Build 2 layer fully connected DNN with 10, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_cols,
hidden_units=[40, 20],
n_classes=2,
activation_fn=tf.nn.relu,
dropout=0.3,
weight_column_name="weight",
model_dir="./test2",
optimizer=tf.train.AdamOptimizer)
'''old validation_monitor = tf.contrib.learn.monitors.ValidationMonitor(
test_set.data,
test_set.target,
every_n_steps=50)'''
# Fit model.
classifier.fit(input_fn=lambda: input_fn(training_set), steps=400)
''' regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols,
hidden_units=[10, 10],
model_dir="/tmp/epl_model")
# Fit old
regressor.fit(input_fn=lambda: input_fn(training_set), steps=3000)'''
''' def get_train_inputs():
x = tf.constant(training_set.data)
y = tf.constant(training_set.target)
return x, y
'''
'''
# Score accuracy
ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1)
loss_score = ev["loss"]
print("Loss: {0:f}".format(loss_score))
# Print out predictions
y = regressor.predict(input_fn=lambda: input_fn(prediction_set))
# .predict() returns an iterator; convert to a list and print predictions
predictions = list(itertools.islice(y, 6))
print("Predictions: {}".format(str(predictions)))
'''
'''
# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=lambda: input_fn(prediction_set),
steps=1)["accuracy"]
print("\nTest Accuracy: {0:f}\n".format(accuracy_score))
'''
#predictions = list(classifier.predict(input_fn=lambda: input_fn(prediction_set)))
predicted_prob = np.array(classifier.predict_proba(input_fn=lambda: original_input_fn(prediction_set), as_iterable=False))
np.save('result.npy', predicted_prob)
'''
print(prediction_set)
exp = np.multiply(np.array(predicted_prob),np.array(prediction_set2))
print(predicted_prob)
print(exp)
np.argmax(exp, axis=0)
def accuracy():
count = 0
correct = 0
for i in range(0,exp.shape[0]):
count += 1
if predicted_class[i] == prediction_set[i, 0]:
correct += 1
acc = correct/count
print("Accuracy: " + str(acc))
print("Total matches: " + str(count))
def profit_rate():
count = 0
profit = 0
for i in range(0,exp.shape[0]):
if np.max(exp[i,:])>1.1:
count += 1
if np.argmax(exp[i,:]) == prediction_set.iloc[i,0]:
profit += prediction_set2.iloc[i,prediction_set.iloc[i,0]]
pr = profit/count
print("Profit rate: " + str(pr))
print("Count: " + str(count))
def profit_rate():
count = 0
profit = 0
for i in range(0,exp.shape[0]):
if np.max(exp[i,:])>1:
count += 1
if np.argmax(exp[i,:]) == prediction_set.iloc[i,0]:
profit += prediction_set2.iloc[i,prediction_set.iloc[i,0]]
pr = profit/count
print("Profit rate: " + str(pr))
print("Count: " + str(count))
def profit_rate_2():
put = 0
profit = 0
count = 0
for i in range(0,exp.shape[0]):
if np.max(exp[i,:])>1.3:
count += 0
put += 0
if np.argmax(exp[i,:]) == prediction_set.iloc[i,0]:
profit += 0 * prediction_set2.iloc[i,prediction_set.iloc[i,0]]
elif np.max(exp[i,:])>1.15:
count += 1
put += 2
if np.argmax(exp[i,:]) == prediction_set.iloc[i,0]:
profit += 2 * prediction_set2.iloc[i,prediction_set.iloc[i,0]]
elif np.max(exp[i,:])>1.05:
count += 1
put += 1
if np.argmax(exp[i,:]) == prediction_set.iloc[i,0]:
profit += 1 * prediction_set2.iloc[i,prediction_set.iloc[i,0]]
pr = profit/put
print("Profit rate: " + str(pr))
print("Count: " + str(count))
'''
'''def profit_rate():
count = 0
profit = 0
for i in range(0,exp.shape[0]):
if np.max(exp[i,:])>1:
count += 1
if np.argmax(exp[i,:]) == prediction_set.iloc[i,0]:
profit += prediction_set2.iloc[i,prediction_set.iloc[i,0]]
pr = profit/count
print("Profit rate: " + str(pr)) '''
#profit_rate()
#profit_rate_2()
'''print(
"Predictions: {}\n"
.format(predictions))
print(
"Predictions: {}\n"
.format(predicted_prob))'''
if __name__ == "__main__":
main()