-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
232 lines (183 loc) · 7.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import collections
import csv
from typing import Dict
import math
from evaluation import Evaluator
from model import NeuralMachineTranslator
from torch import optim
from parallel_data import ParallelData, TestData
from helpers import get_validation_metrics
import pickle
import torch
from torchtext.data import BucketIterator, Iterator, interleave_keys
from time import time
Metrics = collections.namedtuple('Metrics', ['BLEU', 'TER', 'loss'])
use_cuda = torch.cuda.is_available()
def train(batch, model, use_teacher_forcing):
output, loss, _ = model(batch, teacher_forcing=use_teacher_forcing, get_loss=True)
return output, loss
def train_epochs(
training_data: ParallelData,
embedding_dimension: int,
n_epochs: int,
batch_size: int,
max_sentence_length: int,
evaluator: Evaluator,
validation_evaluator: Evaluator,
dropout=0.3,
learning_rate=0.01,
max_iterations_per_epoch=math.inf,
teacher_forcing=False
) -> Dict[int, Metrics]:
n_english = len(training_data.english.vocab)
n_french = len(training_data.french.vocab)
# iterators
train_iterator = Iterator(dataset=training_data, batch_size=batch_size,
sort_key=lambda x: interleave_keys(len(x.src), len(x.trg)), train=True)
validation_data = TestData("data/BPE/valid/val.BPE", training_data.english.vocab, training_data.french.vocab)
validation_iterations = (len(validation_data) // batch_size) + 1
validation_iterator = Iterator(dataset=validation_data, batch_size=batch_size,
sort_key=lambda x: interleave_keys(len(x.src), len(x.trg)), train=True)
iterations_per_epoch = min(max_iterations_per_epoch, (len(training_data) // batch_size) + 1)
model = NeuralMachineTranslator(
embedding_dimension,
n_french,
max_sentence_length,
dropout,
n_english,
n_english,
2*embedding_dimension,
batch_size,
training_data.english.vocab.stoi['<EOS>'],
training_data.english.vocab.stoi['<SOS>'],
training_data.english.vocab.stoi['<PAD>'],
max_prediction_length=max_sentence_length
)
model.train()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
print("Parameters to train: ")
for name, param in model.named_parameters():
if param.requires_grad:
print(name)
print()
metrics = {}
validation_metrics = {}
training_metrics = {}
print("Start training..")
for epoch in range(1, n_epochs + 1):
epoch_loss = 0
iteration_loss = 0
start_time = time()
for iteration in range(iterations_per_epoch):
# set gradients to zero
optimizer.zero_grad()
model.zero_grad()
# get next batch
batch = next(iter(train_iterator))
# forward pass
prediction, loss = train(batch, model, teacher_forcing)
# # backward pass final step without retaining graph
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 5.)
# update parameters final step
optimizer.step()
# save losses and add predicted sentences to evaluator
epoch_loss += loss.item()
iteration_loss += loss.item()
evaluator.add_sentences(batch.trg[0], prediction, model.EOS)
if iteration > 1 and iteration % 200 == 0:
current_time = (time() - start_time) / 200
print('batch {}/{}'.format(iteration, iterations_per_epoch))
print('average loss per batch: {:5.3}'.format(iteration_loss / 200))
print("time per batch {:3}".format(current_time))
iteration_loss = 0
start_time = time()
# save evaluation metrics
metrics[epoch] = Metrics(evaluator.bleu(), evaluator.ter(), float(epoch_loss))
evaluator.write_to_file('output/predictions_epoch{}'.format(epoch))
# clear sentences from evaluator
evaluator.clear_sentences()
print(
'Epoch {}: training metrics: loss {:.3}, BLEU {:.3}, TER {:.3}, LR {:.3}'.format(
epoch, float(metrics[epoch].loss), float(metrics[epoch].BLEU), float(metrics[epoch].TER), float(learning_rate)
)
)
print("Getting validation metrics..")
validation_metrics[epoch], training_metrics[epoch] = get_validation_metrics(
model,
validation_iterations,
evaluator,
validation_evaluator,
train_iterator,
validation_iterator
)
# clear sentences out of evaluators
evaluator.clear_sentences()
validation_evaluator.clear_sentences()
print(
'Epoch {}: validation metrics: BLEU {:.3}, TER {:.3}'.format(
epoch, float(validation_metrics[epoch].BLEU), float(validation_metrics[epoch].TER)
)
)
if epoch > 1 and metrics[epoch].loss > metrics[epoch - 1].loss:
learning_rate /= 4
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
with open('training_progress.csv', 'w') as file:
filewriter = csv.writer(file)
filewriter.writerow(['Epoch', 'loss', 'BLEU', 'TER'])
for epoch, metric in metrics.items():
filewriter.writerow([epoch, metric.loss, metric.BLEU, metric.TER])
with open('validation_progress.csv', 'w') as file:
filewriter = csv.writer(file)
filewriter.writerow(['Epoch', 'training BLEU', 'valid BLEU', 'training TER', 'valid TER'])
for epoch, metric in validation_metrics.items():
filewriter.writerow([epoch, training_metrics[epoch].BLEU, validation_metrics[epoch].BLEU,
training_metrics[epoch].TER, validation_metrics[epoch].TER])
with open('output/model_epoch{}.pickle'.format(epoch), 'wb') as file:
pickle.dump(model, file)
return metrics
# noinspection PyPackageRequirements
if __name__ == "__main__":
data_path = "data/"
# paths to data
train_path = data_path + "BPE/train/train.BPE"
validation_path = data_path + "BPE/valid/val.BPE"
test_path = data_path + "BPE/test/test.BPE"
# locations to save data
filename_train = 'pickles/train_data.pickle'
filename_valid = 'pickles/validation_data.pickle'
filename_test = 'pickles/test_data.pickle'
# hyper parameters
embedding_dimension = 100
batch_size = 32
epochs = 50
max_sentence_length = 30
max_iterations_per_epoch = 30
dropout = 0.3
initial_learning_rate = 0.2
teacher_forcing = True
# get data
training_data = ParallelData(train_path)
# build vocabulary
training_data.french.build_vocab(training_data, max_size=80000)
training_data.english.build_vocab(training_data, max_size=40000)
# save vocabulary
torch.save(training_data.french.vocab, 'pickles/french_vocab.txt')
torch.save(training_data.english.vocab, 'pickles/english_vocab.txt')
# initialize evaluators
evaluator = Evaluator(training_data.english.vocab, training_data.french.vocab)
validation_evaluator = Evaluator(training_data.english.vocab, training_data.french.vocab)
# train
train_epochs(
training_data,
embedding_dimension,
epochs,
batch_size,
max_sentence_length,
evaluator,
validation_evaluator,
dropout,
initial_learning_rate,
# max_iterations_per_epoch=max_iterations_per_epoch,
teacher_forcing=teacher_forcing
)