-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
200 lines (153 loc) · 5.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import numpy as np
import matplotlib.pyplot as plt
import buggesmatteland as bml
import cmath
import statistics as st
import scipy.optimize
import sys
# ---------- Specifications from CMD line ---------- #
attemptCounter = 0
try:
SNR_db = int(sys.argv[1])
except IndexError:
print("No arguments given. Running with default.")
SNR_db = -10
k = 10
fft_length = 2**k
ITERATIONS = 100
attemptCounter += 1
try:
k = int(sys.argv[2])
fft_length = 2**k
except IndexError:
if attemptCounter == 1:
print("No length or iteration arguments given. Running with default.")
k = 10
fft_length = 2**k
ITERATIONS = 100
attemptCounter += 1
try:
ITERATIONS = int(sys.argv[3])
except IndexError:
if attemptCounter == 2:
print("No iteration argument given. Running with default.")
ITERATIONS = 100
print()
# ---------- Signal specifications ---------- #
A = 1.0
SNR_linear = 10.0**(SNR_db/10)
SIGMA_SQUARED = (A**2)/(2*SNR_linear)
T = 10**(-6)
N = 513
n_0 = -256
f_0 = 10**5
omega_0 = 2*np.pi*f_0
theta = np.pi/8
# ---------- CRLB Helpers ---------- #
P = (N*(N-1)) / 2
Q = (N*(N-1)*(2*N-1)) / 6
# ---------- CRLB ---------- #
CRLB_OMEGA = (12*(SIGMA_SQUARED)) / ((A**2)*(T**2)*N*((N**2)-1)) # In Radians^2
CRLB_THETA = 12*(SIGMA_SQUARED)*((n_0**2)*N + 2*n_0*P + Q) / ((A**2)*(N**2)*((N**2)-1))
# ---------- Generate a FFT to be used in 1B) ---------- #
# White complex Gaussian noise
gwReal = np.random.normal(0, np.sqrt(SIGMA_SQUARED), size=N)
gwImag = np.random.normal(0, np.sqrt(SIGMA_SQUARED), size=N)*1j
gw = []
for i in range(N):
gw.append(gwReal[i] + gwImag[i])
# Exponential signal
gs = []
for n in range(N):
gs.append(A*np.exp(np.complex(0,1)*((omega_0)*(n + n_0)*T + theta)))
# Total signal
gx = []
for i in range(N):
gx.append(gs[i] + gw[i])
gFFT = np.fft.fft(gx,2**10)
gf = bml.findDominantFrequency(np.absolute(gFFT),T,2**10)
# ---------- Computes MLE of the frecuency and phase ---------- #
def computeMLE():
# ---------- Signals ---------- #
# White complex Gaussian noise
wReal = np.random.normal(0, np.sqrt(SIGMA_SQUARED), size=N)
wImag = np.random.normal(0, np.sqrt(SIGMA_SQUARED), size=N)*1j
w = []
for i in range(N):
w.append(wReal[i] + wImag[i])
# Exponential signal
s = []
for n in range(N):
s.append(A*np.exp(np.complex(0,1)*((omega_0)*(n + n_0)*T + theta)))
# Total signal
x = []
for i in range(N):
x.append(s[i] + w[i])
# Fourier transform
FT_x = np.fft.fft(x,fft_length)
# Finding most dominant frequency in total signal
f_2,i = bml.findDominantFrequency(np.absolute(FT_x),T,fft_length)
t = np.angle((np.exp(-(np.complex(0,1)*2*np.pi*f_2*n_0*T)))*FT_x[i])
return f_2,t
# ---------- Function to be minimzed in part 1B) ---------- #
def functionToBeMinimized(f_variable):
f_var_sliced = f_variable[0]
# -------- Exponential signal without noise -------- #
s = []
for n in range(N):
s.append(A*np.exp(np.complex(0,1)*((2*np.pi*f_var_sliced)*(n + n_0)*T + theta)))
fftGuess = np.fft.fft(s,2**10)
mse = bml.meanSquareError(np.absolute(fftGuess),np.absolute(gFFT))
#print(f_var_sliced,":",mse)
return mse
def main():
print("Running ",ITERATIONS, "iterations with:")
print("SNR [dB]:",SNR_db)
print("FFT length:",fft_length,"(2^" + str(k) + ")")
print("Frequency:",f_0/1000,"kHz")
print("The CRLB for the Omega estimator is:", CRLB_OMEGA/(4*np.pi**2),"Hz^2")
print("The CRLB for the Theta estimator is:",CRLB_THETA)
print()
print(" *--------------- RESULTS ---------------*")
error_theta=[]
error_f=[]
freqs = []
thetas = []
for i in range(ITERATIONS):
f,t = computeMLE()
err_f = f_0 - f
err_theta=theta-t
freqs.append(f) # In hertz
error_f.append(err_f)
thetas.append(t)
error_theta.append(err_theta)
print("Mean freq:",st.mean(freqs))
errmean=st.mean(error_f)
print("Mean freq error is: ", errmean/1000, "kHz")
thetamean = st.mean(thetas)
errvar_f=st.variance(error_f, errmean)
print("The variance of the freq error is: ",errvar_f, "Hz^2")
mean_error=st.mean(error_theta)
print("Mean theta is:", thetamean)
print("Mean theta error is: error", st.mean(error_theta))
print("The variance of the phase is: ", st.variance(error_theta, mean_error))
print()
print("Doing part b)")
print()
result = scipy.optimize.minimize(functionToBeMinimized,100000,method = "Nelder-Mead")
# Plotting MSE
mse = []
t = [1,2]
for f in range(60000,140000,100):
t[0] = f
mse.append(functionToBeMinimized(t))
plt.figure(2)
plt.title("MSE")
plt.xlabel("Frequency [Hz]")
plt.ylabel("Mean Square Error")
plt.plot(np.arange(60000,140000,100),mse)
plt.savefig("Bilder/mse.png")
print("The frequency estimate with noise and FFT length 2^10:",gf[0], "Hz")
print("The frequency estimate after finetuning:",result.x[0])
print("New error is:",f_0 - result.x[0])
main()