-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.hh
694 lines (533 loc) · 19.3 KB
/
kernel.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
#ifndef CHICKADEE_KERNEL_HH
#define CHICKADEE_KERNEL_HH
#include "x86-64.h"
#include "lib.hh"
#include "k-list.hh"
#include "k-lock.hh"
#include "k-memrange.hh"
#include "k-waitstruct.hh"
#include "k-vfs.hh"
#include "k-futex.hh"
#include "k-shm.hh"
#if CHICKADEE_PROCESS
#error "kernel.hh should not be used by process code."
#endif
struct proc;
struct threadgroup;
struct yieldstate;
struct proc_loader;
struct elf_program;
struct buddyallocator;
struct timingwheel;
#define PROC_RUNNABLE 1
#define STACK_CANARY_VALUE 3482
// kernel.hh
//
// Functions, constants, and definitions for the kernel.
#define N_GLOBAL_OPEN_FILES 32
extern file* open_file_table[N_GLOBAL_OPEN_FILES];
extern spinlock open_file_table_lock;
extern shm_store global_shm_store;
#define N_FILE_DESCRIPTORS 32
#define N_PER_PROC_SHMS 32
// Process descriptor type
struct __attribute__((aligned(4096))) proc {
enum pstate_t {
ps_blank = 0, ps_runnable = PROC_RUNNABLE, ps_faulted, ps_exited, ps_blocked
};
// These four members must come first:
pid_t id_ = 0; // Process ID
regstate* regs_ = nullptr; // Process's current registers
yieldstate* yields_ = nullptr; // Process's current yield state
std::atomic<int> pstate_ = ps_blank; // Process state
x86_64_pagetable* pagetable_ = nullptr; // Process's page table // TODO: should delete for multithreading
uintptr_t recent_user_rip_ = 0; // Most recent user-mode %rip
#if HAVE_SANITIZERS
int sanitizer_status_ = 0;
#endif
list_links runq_links_;
list_links thread_links_;
pid_t tgid_;
threadgroup* tg_;
int exit_status_;
int resume_count_ = 0;
int home_cpuindex_;
wait_queue wq_;
int stack_canary_ = STACK_CANARY_VALUE;
proc();
NO_COPY_OR_ASSIGN(proc);
inline bool contains(uintptr_t addr) const;
inline bool contains(void* ptr) const;
void init_user(pid_t pid, threadgroup* tg);
void init_kernel(pid_t pid, threadgroup* tg, void (*f)());
// void init_user(pid_t pid, pid_t ppid, x86_64_pagetable* pt);
// void init_kernel(pid_t pid, pid_t ppid, void (*f)());
static int load(proc_loader& ld);
void exception(regstate* reg);
uintptr_t run_syscall(regstate* reg);
uintptr_t syscall(regstate* reg);
void yield();
[[noreturn]] void yield_noreturn();
[[noreturn]] void resume();
[[noreturn]] void panic_nonrunnable();
inline bool resumable() const;
int syscall_nastyalloc(int n);
int syscall_testkalloc(uintptr_t heap_top, uintptr_t stack_bottom, int mode);
int syscall_testfree(uintptr_t heap_top, uintptr_t stack_bottom);
int syscall_fork(regstate* regs);
void syscall_exit(regstate* regs);
void syscall_texit(regstate* regs);
int syscall_clone(regstate* regs);
int syscall_waitpid(regstate* regs);
int syscall_msleep(regstate* regs);
int syscall_futex(regstate* regs);
int syscall_shmget(regstate* regs);
uintptr_t syscall_shmat(regstate* regs);
int syscall_shmdt(regstate* regs);
int syscall_open(regstate* reg);
uintptr_t syscall_read(regstate* reg);
uintptr_t syscall_write(regstate* reg);
uintptr_t syscall_readdiskfile(regstate* reg);
ssize_t syscall_lseek(regstate* reg);
int syscall_execv(regstate* reg);
int syscall_dup2(regstate* reg);
int syscall_close(regstate* reg);
uint64_t syscall_pipe(regstate* reg);
int syscall_mkdir(regstate* reg);
int syscall_rmdir(regstate* reg);
int get_open_fd(spinlock_guard& guard);
int assign_to_open_fd(file* f);
int assign_to_open_fd(file* f, spinlock_guard& guard);
int get_open_shmid(spinlock_guard& guard);
int assign_to_open_shmid(shm* s);
int assign_to_open_shmid(shm* s, spinlock_guard& guard);
int get_available_open_file_table_id(spinlock_guard& guard);
int add_to_open_file_table(file* f);
int add_to_open_file_table(file* f, spinlock_guard& guard);
int close_fd(int fd, spinlock_guard& guard);
void copy_fd_table_from_proc(proc* source);
bool is_valid_string(char* str, size_t max_char);
bool is_valid_pathname(uintptr_t pathname);
bool is_valid_argument(uintptr_t argv, int argc);
bool is_valid_fd(int fd);
ssize_t copy_argument_to_stack_end(uintptr_t stack_end, uintptr_t stack_end_va, uintptr_t argv_val, int argc);
int waitpid(pid_t pid, int* stat, int options);
void texit(int status);
void wake();
inline irqstate lock_pagetable_read();
inline void unlock_pagetable_read(irqstate& irqs);
private:
static int load_segment(const elf_program& ph, proc_loader& ld);
};
struct __attribute__((aligned(4096))) threadgroup {
pid_t tgid_;
pid_t ppid_;
x86_64_pagetable* pagetable_ = nullptr; // Process's page table
file* fd_table_[N_FILE_DESCRIPTORS];
spinlock fd_table_lock_;
shm_mapping shm_mapping_table_[N_PER_PROC_SHMS];
spinlock shm_mapping_table_lock_;
list_links sibling_links_;
list<threadgroup, &threadgroup::sibling_links_> children_list_;
wait_queue process_wq_;
int process_exit_status_;
std::atomic<bool> is_exited_ = false;
std::atomic<bool> interrupt_sleep_ = false;
std::atomic<bool> should_exit_ = false;
list<proc, &proc::thread_links_> thread_list_;
spinlock thread_list_lock_;
threadgroup();
void init(pid_t tgid, pid_t ppid, x86_64_pagetable* pt);
static pid_t assign_to_empty_tgid(spinlock_guard &guard, threadgroup* tg);
void init_fd_table();
void init_shm_table();
void add_proc_to_thread_list(proc* p);
void copy_fd_table_from_threadgroup(threadgroup* tg);
void copy_shm_mapping_table_from_threadgroup(threadgroup* tg);
void put_shm(int shmid, spinlock_guard& guard);
void free_shm_table();
threadgroup* get_child(pid_t tgid, spinlock_guard &process_hierarchy_lock);
threadgroup* get_any_exited_child(spinlock_guard &process_hierarchy_lock);
int waitpid(pid_t tgid, int* stat, int options);
void exit(int status);
void exit_cleanup(int status);
bool is_exited(spinlock_guard &guard);
};
#define NTHREADGROUP 16
extern threadgroup* tgtable[NTHREADGROUP];
extern spinlock tgtable_lock;
extern spinlock process_hierarchy_lock;
#define NPROC 16
extern proc* ptable[NPROC];
extern spinlock ptable_lock;
#define PROCSTACK_SIZE 4096UL
struct proc_loader {
x86_64_pagetable* pagetable_;
uintptr_t entry_rip_ = 0;
inline proc_loader(x86_64_pagetable* pt)
: pagetable_(pt) {
}
virtual ssize_t get_page(uint8_t** pg, size_t off) = 0;
virtual void put_page() = 0;
};
// CPU state type
struct __attribute__((aligned(4096))) cpustate {
// These three members must come first:
cpustate* self_;
proc* current_ = nullptr;
uint64_t syscall_scratch_;
int cpuindex_;
int lapic_id_;
list<proc, &proc::runq_links_> runq_;
spinlock runq_lock_;
unsigned long nschedule_;
proc* idle_task_;
unsigned spinlock_depth_;
uint64_t gdt_segments_[7];
x86_64_taskstate taskstate_;
inline cpustate()
: self_(this) {
}
NO_COPY_OR_ASSIGN(cpustate);
inline bool contains(uintptr_t addr) const;
inline bool contains(void* ptr) const;
void init();
void init_ap();
void exception(regstate* reg);
void enqueue(proc* p);
[[noreturn]] void schedule(proc* yielding_from);
void enable_irq(int irqno);
void disable_irq(int irqno);
private:
void init_cpu_hardware();
void init_idle_task();
};
#define MAXCPU 16
extern cpustate cpus[MAXCPU];
extern int ncpu;
#define CPUSTACK_SIZE 4096UL
#define CPUALTSTACK_SIZE 3072UL
inline cpustate* this_cpu();
// yieldstate: callee-saved registers that must be preserved across
// proc::yield()
struct yieldstate {
uintptr_t reg_rbp;
uintptr_t reg_rbx;
uintptr_t reg_r12;
uintptr_t reg_r13;
uintptr_t reg_r14;
uintptr_t reg_r15;
uintptr_t reg_rflags;
};
// timekeeping
// `HZ` defines the number of timer interrupts per second, or ticks.
// Real kernels typically use 100 or 1000; Chickadee typically uses 100.
// Exception: Sanitizers slow down the kernel so much that recursive timer
// interrupts can become a problem, so when sanitizers are on, we reduce the
// interrupt frequency to 10 per second.
#if HAVE_SANITIZERS
# define HZ 10
#else
# define HZ 100
#endif
extern std::atomic<unsigned long> ticks; // number of ticks since boot
// Segment selectors
#define SEGSEL_BOOT_CODE 0x8 // boot code segment
#define SEGSEL_KERN_CODE 0x8 // kernel code segment
#define SEGSEL_KERN_DATA 0x10 // kernel data segment
#define SEGSEL_APP_CODE 0x18 // application code segment
#define SEGSEL_APP_DATA 0x20 // application data segment
#define SEGSEL_TASKSTATE 0x28 // task state segment
// Physical memory size
#define MEMSIZE_PHYSICAL 0x200000
// Virtual memory size
#define MEMSIZE_VIRTUAL 0x300000
enum memtype_t {
mem_nonexistent = 0,
mem_available = 1,
mem_kernel = 2,
mem_reserved = 3,
mem_console = 4
};
extern memrangeset<16> physical_ranges;
// Hardware interrupt numbers
#define INT_IRQ 32U
#define IRQ_TIMER 0
#define IRQ_KEYBOARD 1
#define IRQ_IDE 14
#define IRQ_ERROR 19
#define IRQ_SPURIOUS 31
#define KTEXT_BASE 0xFFFFFFFF80000000UL
#define HIGHMEM_BASE 0xFFFF800000000000UL
inline uint64_t pa2ktext(uint64_t pa) {
assert(pa < -KTEXT_BASE);
return pa + KTEXT_BASE;
}
template <typename T>
inline T pa2ktext(uint64_t pa) {
return reinterpret_cast<T>(pa2ktext(pa));
}
inline uint64_t ktext2pa(uint64_t ka) {
assert(ka >= KTEXT_BASE);
return ka - KTEXT_BASE;
}
template <typename T>
inline uint64_t ktext2pa(T* ptr) {
return ktext2pa(reinterpret_cast<uint64_t>(ptr));
}
inline uint64_t pa2ka(uint64_t pa) {
assert(pa < -HIGHMEM_BASE);
return pa + HIGHMEM_BASE;
}
template <typename T>
inline T pa2kptr(uint64_t pa) {
static_assert(std::is_pointer<T>::value, "T must be pointer");
return reinterpret_cast<T>(pa2ka(pa));
}
inline uint64_t ka2pa(uint64_t ka) {
assert(ka >= HIGHMEM_BASE && ka < KTEXT_BASE);
return ka - HIGHMEM_BASE;
}
template <typename T>
inline uint64_t ka2pa(T* ptr) {
return ka2pa(reinterpret_cast<uint64_t>(ptr));
}
inline uint64_t kptr2pa(uint64_t kptr) {
assert(kptr >= HIGHMEM_BASE);
return kptr - (kptr >= KTEXT_BASE ? KTEXT_BASE : HIGHMEM_BASE);
}
template <typename T>
inline uint64_t kptr2pa(T* ptr) {
return kptr2pa(reinterpret_cast<uint64_t>(ptr));
}
template <typename T>
inline bool is_kptr(T* ptr) {
uintptr_t va = reinterpret_cast<uint64_t>(ptr);
return va >= HIGHMEM_BASE;
}
template <typename T>
inline bool is_ktext(T* ptr) {
uintptr_t va = reinterpret_cast<uint64_t>(ptr);
return va >= KTEXT_BASE;
}
template <typename T>
inline T read_unaligned(const uint8_t* x) {
T a;
memcpy(&a, x, sizeof(T));
return a;
}
template <typename T>
inline T read_unaligned_pa(uint64_t pa) {
return read_unaligned<T>(pa2kptr<const uint8_t*>(pa));
}
template <typename T, typename U>
inline T read_unaligned(const uint8_t* ptr, T (U::* member)) {
alignas(U) char space[sizeof(U)] = {};
U* dummy = (U*)(space);
T a;
memcpy(&a, ptr + (reinterpret_cast<uintptr_t>(&(dummy->*member)) - reinterpret_cast<uintptr_t>(dummy)), sizeof(T));
return a;
}
extern timingwheel timer_queue;
extern spinlock timer_lock;
#define TIMING_WHEEL_QUEUE_COUNT 64
struct timingwheel {
int n_ = TIMING_WHEEL_QUEUE_COUNT;
wait_queue wqs_[TIMING_WHEEL_QUEUE_COUNT];
wait_queue* get_wq_for_time(uint64_t time);
void wake_for_time(uint64_t time);
void wake_all();
timingwheel();
};
#define BUDDY_ALLOCATOR_MIN_ORDER 12
#define BUDDY_ALLOCATOR_MAX_ORDER 21
extern buddyallocator allocator;
struct pagestatus {
int order;
bool is_free;
list_links link_;
};
struct buddyallocator {
const int min_order_ = BUDDY_ALLOCATOR_MIN_ORDER;
const int max_order_ = BUDDY_ALLOCATOR_MAX_ORDER;
pagestatus pages_[MEMSIZE_PHYSICAL / PAGESIZE];
list<pagestatus, &pagestatus::link_> free_lists_[BUDDY_ALLOCATOR_MAX_ORDER - BUDDY_ALLOCATOR_MIN_ORDER + 1];
buddyallocator();
void init();
uintptr_t allocate(size_t size);
int free(uintptr_t addr);
private:
pagestatus* split_to_order(pagestatus* pg, int order);
void merge(pagestatus* pg);
pagestatus* merge_buddies(pagestatus* buddy1, pagestatus* buddy2);
int find_buddy_id(int page_id);
int find_buddy_id_for_order(int page_id, int order);
bool is_index_aligned(int page_id, int order);
int get_index_offset(int order);
int pg2pi(pagestatus* pg);
uintptr_t pg2pa(pagestatus* pg);
int pa2pi(uintptr_t pa);
pagestatus* pa2pg(uintptr_t pa);
pagestatus* find_smallest_free(int order);
int get_desired_order(size_t size);
void init_range(uintptr_t start, uintptr_t end);
void init_reserved_range(uintptr_t start, uintptr_t end);
int max_order_allocable(uintptr_t start, uintptr_t end);
bool is_pa_free(uintptr_t pa);
bool is_allocated_block(uintptr_t pa);
};
// kalloc(sz)
// Allocate and return a pointer to at least `sz` contiguous bytes
// of memory. Returns `nullptr` if `sz == 0` or on failure.
//
// If `sz` is a multiple of `PAGESIZE`, the returned pointer is guaranteed
// to be page-aligned.
void* kalloc(size_t sz) __attribute__((malloc));
// kfree(ptr)
// Free a pointer previously returned by `kalloc`. Does nothing if
// `ptr == nullptr`.
void kfree(void* ptr);
void kfree_all_user_mappings(x86_64_pagetable* pt);
void kfree_pagetable(x86_64_pagetable* pt);
// operator new, operator delete
// Expressions like `new (std::nothrow) T(...)` and `delete x` work,
// and call kalloc/kfree.
void* operator new(size_t sz, const std::nothrow_t&) noexcept;
void* operator new(size_t sz, std::align_val_t al, const std::nothrow_t&) noexcept;
void* operator new[](size_t sz, const std::nothrow_t&) noexcept;
void* operator new[](size_t sz, std::align_val_t al, const std::nothrow_t&) noexcept;
void operator delete(void* ptr) noexcept;
void operator delete(void* ptr, size_t sz) noexcept;
void operator delete(void* ptr, std::align_val_t al) noexcept;
void operator delete(void* ptr, size_t sz, std::align_val_t al) noexcept;
void operator delete[](void* ptr) noexcept;
void operator delete[](void* ptr, size_t sz) noexcept;
void operator delete[](void* ptr, std::align_val_t al) noexcept;
void operator delete[](void* ptr, size_t sz, std::align_val_t al) noexcept;
// knew<T>(), knew<T>(args...)
// Like `new (std::nothrow) T(args...)`.
template <typename T>
inline __attribute__((malloc)) T* knew() {
return new (std::nothrow) T;
}
template <typename T, typename... Args>
inline __attribute__((malloc)) T* knew(Args&&... args) {
return new (std::nothrow) T(std::forward<Args>(args)...);
}
// init_kalloc
// Initialize stuff needed by `kalloc`. Called from `init_hardware`,
// after `physical_ranges` is initialized.
void init_kalloc();
// Initialize hardware and CPUs
void init_hardware();
// Query machine configuration
unsigned machine_ncpu();
unsigned machine_pci_irq(int pci_addr, int intr_pin);
struct ahcistate;
extern ahcistate* sata_disk;
// Early page table (only kernel mappings)
extern x86_64_pagetable early_pagetable[3];
// Allocate and initialize a new, empty page table
x86_64_pagetable* kalloc_pagetable();
// Change current page table
void set_pagetable(x86_64_pagetable* pagetable);
// Print memory viewer
void console_memviewer(proc* p);
// Start the kernel
[[noreturn]] void kernel_start(const char* command);
// Turn off the virtual machine
[[noreturn]] void poweroff();
// Reboot the virtual machine
[[noreturn]] void reboot();
// Call after last process exits
[[noreturn]] void process_halt();
// log_printf, log_vprintf
// Print debugging messages to the host's `log.txt` file. We run QEMU
// so that messages written to the QEMU "parallel port" end up in `log.txt`.
__noinline void log_printf(const char* format, ...);
__noinline void log_vprintf(const char* format, va_list val);
// log_backtrace
// Print a backtrace to the host's `log.txt` file, either for the current
// stack or for a given stack range.
void log_backtrace(const char* prefix = "");
void log_backtrace(const char* prefix, uintptr_t rsp, uintptr_t rbp);
// lookup_symbol(addr, name, start)
// Use the debugging symbol table to look up `addr`. Return the
// corresponding symbol name (usually a function name) in `*name`
// and the first address in that symbol in `*start`.
__no_asan
bool lookup_symbol(uintptr_t addr, const char** name, uintptr_t* start);
#if HAVE_SANITIZERS
// Sanitizer functions
void init_sanitizers();
void disable_asan();
void enable_asan();
void asan_mark_memory(unsigned long pa, size_t sz, bool poisoned);
#else
inline void disable_asan() {}
inline void enable_asan() {}
inline void asan_mark_memory(unsigned long pa, size_t sz, bool poisoned) {}
#endif
// `panicking == true` iff some CPU has panicked
extern std::atomic<bool> panicking;
// this_cpu
// Return a pointer to the current CPU. Requires disabled interrupts.
inline cpustate* this_cpu() {
assert(is_cli());
cpustate* result;
asm volatile ("movq %%gs:(0), %0" : "=r" (result));
return result;
}
// current
// Return a pointer to the current `struct proc`.
inline proc* current() {
proc* result;
asm volatile ("movq %%gs:(8), %0" : "=r" (result));
return result;
}
// adjust_this_cpu_spinlock_depth(delta)
// Adjust this CPU's spinlock_depth_ by `delta`. Does *not* require
// disabled interrupts.
inline void adjust_this_cpu_spinlock_depth(int delta) {
asm volatile ("addl %1, %%gs:%0"
: "+m" (*reinterpret_cast<int*>
(offsetof(cpustate, spinlock_depth_)))
: "er" (delta) : "cc", "memory");
}
// cpustate::contains(ptr)
// Return true iff `ptr` lies within this cpustate's allocation.
inline bool cpustate::contains(void* ptr) const {
return contains(reinterpret_cast<uintptr_t>(ptr));
}
inline bool cpustate::contains(uintptr_t addr) const {
uintptr_t delta = addr - reinterpret_cast<uintptr_t>(this);
return delta <= CPUSTACK_SIZE;
}
// proc::contains(ptr)
// Return true iff `ptr` lies within this cpustate's allocation.
inline bool proc::contains(void* ptr) const {
return contains(reinterpret_cast<uintptr_t>(ptr));
}
inline bool proc::contains(uintptr_t addr) const {
uintptr_t delta = addr - reinterpret_cast<uintptr_t>(this);
return delta <= PROCSTACK_SIZE;
}
// proc::resumable()
// Return true iff this `proc` can be resumed (`regs_` or `yields_`
// is set). Also checks some assertions about `regs_` and `yields_`.
inline bool proc::resumable() const {
assert(!(regs_ && yields_)); // at most one at a time
assert(!regs_ || contains(regs_)); // `regs_` points within this
assert(!yields_ || contains(yields_)); // same for `yields_`
return regs_ || yields_;
}
// proc::lock_pagetable_read()
// Obtain a “read lock” on this process’s page table. While the “read
// lock” is held, it is illegal to remove or change existing valid
// mappings in that page table, or to free page table pages.
inline irqstate proc::lock_pagetable_read() {
return irqstate();
}
inline void proc::unlock_pagetable_read(irqstate&) {
}
#endif