-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining code.txt
119 lines (89 loc) · 3.39 KB
/
training code.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import nltk
import joblib
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import tensorflow as tf
tf.compat.v1.disable_v2_behavior()
tf.compat.v1.reset_default_graph()
import tflearn
import numpy as np
import random
import pickle
import json
with open("D:\chatbot\intents.json") as file:
data = json.load(file) # loading intents.json file
# try:
# with open("data.pickle","rb") as f:
# words, labels, training, output = pickle.load(f)
# except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]: # (removing extra characters)
wrds = nltk.word_tokenize(pattern) # bring all the words in a dict.
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words= [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words))) # remove all the duplicates.
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = np.array(training)
output = np.array(output)
with open("data.pickle","wb") as f:
pickle.dump((words, labels, training, output), f)
tf.compat.v1.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])]) # 1 layer/ input layer
net = tflearn.fully_connected(net, 8) # hidden layer 1
net = tflearn.fully_connected(net, 8) # hidden layer 2
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") # output layer , softax gives the probability to each neuron for every particular word whenever we request an output
net = tflearn.regression(net)
model = tflearn.DNN(net)
#try:
# model.load("model.tflearn")
#except:
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True) # here it trains our data
model.save("model.tflearn")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chat():
print("\n\nWelcome to Xananoids!! (type quit to stop)\n\n")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)]) # over here it will result probability of each neuron matches
results_index = np.argmax(results)
tag = labels[results_index] # this will return the specific tag
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
outpt=random.choice(responses)
print(random.choice(responses))
joblib.dump(outpt,'outpt.lb')
chat()