Skip to content

Latest commit

 

History

History
51 lines (38 loc) · 1.53 KB

README.md

File metadata and controls

51 lines (38 loc) · 1.53 KB

Point Cloud GAN

This repository implements a modified version of Point Cloud GAN (ICLR'19 Workshop) which achieves performance comparable to the SetVAE in point cloud generation.

Installation

  • Set up and activate conda environment.
conda env create -f environment.yml
conda activate pcgan
  • Compile CUDA extensions.
sh scripts/install.sh
  • Download ShapeNet dataset and trained checkpoints.
sh scripts/download.sh

Training

You can train using train.py or provided scripts.

# Train using CLI
python train.py --name NAME --cate airplane
# Train using provided settings
sh scripts/train_shapenet_airplane.sh

Testing

You can evaluate checkpointed models using test.py or provided scripts.

# Test user specified checkpoint using CLI
python test.py --ckpt_path CKPT_PATH --cate airplane
# Test provided checkpoints
sh scripts/test_shapenet_airplane.sh

Metrics

Table below shows final metrics for SetVAE and our model (MMD-CD is scaled by 103 and MMD-EMD, COV, 1-NNA by 102). SetVAE is trained for 8000 epochs and our model is trained for 2000 epochs.

Category Model MMD(↓) CD MMD(↓) EMD COV(↑) CD COV(↑) EMD 1-NNA(↓) CD 1-NNA(↓) EMD
Airplane SetVAE 0.199 3.07 43.45 44.93 75.31 77.65
Ours 0.224 3.45 38.27 36.79 - -