forked from gouthampradhan/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
LargestRectangleInHistogram.java
51 lines (47 loc) · 2.08 KB
/
LargestRectangleInHistogram.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
package stack;
import java.util.Stack;
/**
* Created by gouthamvidyapradhan on 20/06/2017.
* Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
* <p>
* For example,
* Given heights = [2,1,5,6,2,3],
* return 10. (min of index 2 and 3 multiplied by two)
* <p>
* Solution O(N):
* <p>
* 1) Create an empty stack.
* <p>
* 2) Start from first bar, and do following for every bar ‘hist[i]’ where ‘i’ varies from 0 to n-1.
* a) If stack is empty or hist[i] is higher than the bar at top of stack, then push ‘i’ to stack.
* b) If this bar is smaller than the top of stack, then keep removing the top of stack while top of the stack is greater. Let the removed bar be hist[tp].
* Calculate area of rectangle with hist[tp] as smallest bar. For hist[tp], the ‘left index’ is previous (previous to tp) item in stack and ‘right index’ is ‘i’ (current index).
* <p>
* 3) If the stack is not empty, then one by one remove all bars from stack and do step 2.b for every removed bar.
*/
public class LargestRectangleInHistogram {
public static void main(String[] args) throws Exception {
int[] A = {2, 3};
System.out.println(new LargestRectangleInHistogram().largestRectangleArea(A));
}
public int largestRectangleArea(int[] heights) {
if (heights.length == 0) return 0;
int maxArea = Integer.MIN_VALUE;
Stack<Integer> stack = new Stack<>();
int i = 0;
for (; i < heights.length; i++) {
while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
int top = stack.pop();
int base = stack.isEmpty() ? i : i - stack.peek() - 1;
maxArea = Math.max(maxArea, base * heights[top]);
}
stack.push(i);
}
while (!stack.isEmpty()) {
int top = stack.pop();
int base = stack.isEmpty() ? i : i - stack.peek() - 1;
maxArea = Math.max(maxArea, base * heights[top]);
}
return maxArea;
}
}