-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
743 lines (672 loc) · 30.2 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
%\documentclass[show notes]{beamer} % print frame + notes
\documentclass[11pt,handout]{beamer} % only notes
%\documentclass[aspectratio=169]{beamer} % only frames
\usefonttheme[onlymath]{serif}
\definecolor{DarkGray}{HTML}{63656a}
\setbeamertemplate{note page}[plain]
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[text line]{%
\hfill\strut{\scriptsize\sf\color{DarkGray}\today}\hfill\strut{%
\scriptsize\sf\color{DarkGray}%
\quad\insertframenumber/\inserttotalframenumber
}%
}
\usepackage{amsfonts}
\beamertemplatenavigationsymbolsempty
\title[Your Short Title]{Nonlinear Control Systems}
\subtitle{Lsn 4: Advanced Stability Theory}
\author{I. Weintraub, Dr. Cobb, \& Capt. Hess}
\institute{Air Force Institute of Technology}
\date{\today}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Advanced Stability Theory}
\textbf{Concepts Concerning Stability}
\begin{itemize}
\item Concepts of stability for non-autonomous systems
\item Lyapunov analysis of non-autonomous systems
\item Instability theorems
%\item Existence of Lyapunov functions
\item Lyapunov Analysis using Barbalat's Lemma
%\item Positive linear systems
%\item The passivity formalism
%\item Absolute Stability
%\item Establishing boundedness signals
%\item Existence and unicity solutions
\end{itemize}
\begin{table}
\centering
\begin{tabular}{l c}
\hline
& Topic \\ \hline
$\checkmark$ Week 1 & Introduction and Math Review\\
$\checkmark$ Week 1-2 & Phase Plane Analysis\\
Week 2-4 & Fundamentals of Lyapunov Theory\\
Week 4 & Advanced Stability Theory\\
Week 4-5 & Describing Functions \\
Week 5-7 & Feedback Linearizion \\
Week 8-9 & Sliding Mode Control \\
Week 10 & Adaptive Control \\\hline
\end{tabular}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Concepts of Stability for Non-Autonomous Systems}
\small
Due to the dependence of non-autonomous system behavior on initial time, $t_0$, definitions include $t_0$ explicitly.\\
\vspace{6pt}
\textbf{Non-Autonomous System}
\begin{equation*}
\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},t)
\end{equation*}
Has an equilibrium point $\mathbf{x}^*$:
\begin{equation*}
\mathbf{f}(\mathbf{x}^*,t) = 0 \quad \forall \; t \geq t_0
\end{equation*}
\textbf{Definition:} An equilibrium point $\mathbf{0}$ is \underline{stable} at $t_0$ if for any $R>0$ there exists a positive scalar $r(R,t_0)$ such that:
\begin{equation*}
||\mathbf{x}(t_0)|| < r \Rightarrow ||\mathbf{x}(t)||<R \quad \forall \; t \geq t_0
\end{equation*}
Otherwise the point $\mathbf{0}$ is unstable.\\
\vspace{6pt}
We can keep the state in a ball of arb. small radius $R$ by starting the state trajectory in a ball of sufficiently small radius $r$.
\end{frame}
\begin{frame}
\frametitle{Concepts of Stability for Non-Autonomous Systems}
\small
\textbf{Definition:} The equilibrium point $\mathbf{0}$ is \underline{asymptotically stable} at a time $t_0$ if:
\begin{enumerate}
\item It is stable
\item $\exists \; r(t_0) > 0$ s.t. $||\mathbf{x}(t_0)||<r(t_0) \Rightarrow ||\mathbf{x}(t)|| \rightarrow \mathbf{0}$ as $t \rightarrow \infty$
\end{enumerate}
Requires that there exists an attractive region for every initial time $t_0$.\\
\vspace{6pt}
\textbf{Definition:} The equilibrium $\mathbf{0}$ is \underline{exponentially stable} if there exists two positive numbers $\alpha \; \& \; \lambda$ s.t. for sufficiently small $\mathbf{x}(t_0)$:
\begin{equation*}
|| \mathbf{x} || \leq \alpha || \mathbf{x} (t) || e^{- \lambda(t - t_0)} \quad \forall \; t \geq t_0
\end{equation*}
\textbf{Definition:} The equilibrium point $\mathbf{0}$ is \underline{globally asymptotically stable} if $\forall \mathbf{x}(t_0)$:
\begin{equation*}
\mathbf{x}(t) \rightarrow \mathbf{0} \; \text{as} \; t \rightarrow \infty
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Concepts of Stability for Non-Autonomous Systems}
\small
\textbf{Example:} $\mathbf{\dot{x}}(t) = -a(t)\mathbf{x}(t)$
The solution to this first order differential equation is: $\mathbf{x}(t) = \mathbf{x}(t_0) \exp \left[ -\int_{t_0}^{t} a(r) dr \right]$\\
\begin{itemize}
\item The system is \underline{stable} if $a(t) \geq 0 \; \forall \; t\geq t_0$
\item The system is \underline{asymptotically stable} if $\int_{0}^{\infty} a(r) dr = +\infty$
\item The system is \underline{exponentially stable} if there exists $T>0$ s.t. $\forall \; t \; \geq 0$ , $\int_{t}^{t+T} a(r) dr \geq \gamma $ where $\gamma = \text{const.} > 0$.
\end{itemize}
Examples:
\begin{itemize}
\item ${\dot{x}} = - \frac{x}{(1+t)^2}$ is stable but not asymptotically stable
\item ${\dot{x}} = - \frac{x}{(1+t)}$ is asymptotically stable
\item ${\dot{x}} = - t x$ is exponentially stable
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Concepts of Stability for Non-Autonomous Systems}
\small
\textbf{Uniformity:} ``In practice it is usually desirable for the system to have certain uniformity in its behavior regardless of when the operation starts''- Slotine. Because the behavior of autonomous systems is independent of the initial time, all the stability properties of an autonomous system are uniform.\\
\vspace{6pt}
\textbf{Definition:} the equilibrium point $\mathbf{0}$ is \underline{locally uniformly stable} if the scalar $r$ chosen independent of $t_0$:
\begin{equation*}
\forall t \geq t_0 \; , \; ||\mathbf{x}(t_0)|| < r \Rightarrow ||\mathbf{x}(t)|| < R \quad \text{i.e. if:} \; r = r(R)
\end{equation*}
\textbf{Definition:} The equilibrium point at the origin is locally \underline{uniformly asymptotically stable} if:
\begin{itemize}
\item It is uniformly stable
\item There exists a ball of attraction $\mathbf{B_{R_0}}$, whose radius is independent of $t_0$, such that any system trajectory with initial states in $\mathbf{B_{R_0}}$ converge to $\mathbf{0}$ uniformly in $t_0$.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Concepts of Stability for Non-Autonomous Systems}
\small
\textbf{Uniform Convergence}: For all $R_1$ and $R_2$ satisfying $0<R_2<R_1\leq R_0 \; \exists \; T(R_1,R_2) >0$ s.t. $\forall t_0 \geq 0$.
\begin{equation*}
||\mathbf{x}(t_0)|| < R_1 \Rightarrow ||\mathbf{x}(t)|| < R_2 \quad \forall t \geq t_0 + T(R_1,R_2)
\end{equation*}
The state trajectory starting from within a ball $\mathbf{B}_{R_1}$ will converge into a smaller ball $\mathbf{B}_{R_2}$ after a time period $T$ which is independent of $t_0$.\\
\vspace{6pt}
Exp. Stability $\Rightarrow$ Unif. Asymp. Stability $\Rightarrow$ Asymp. Stability\\
\vspace{6pt}
\textbf{Example:} $\dot{x} = - \frac{x}{1+t}$ has general solution:\\
\begin{equation*}
x(t) = \frac{1 + t_0}{1 + t} x(t_0)
\end{equation*}
Note that this first order system is asymptotically stable, but not uniformly since larger $t_0$ requires longer time to get close to the origin.\\
\vspace{6pt}
\underline{Global Uniformly Asymptotic Stability} replaces ball of attraction $\mathbf{B}_{R_0}$ by the entire state space.
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis of Non-Autonomous Systems}
\small
\textbf{Lyapunov's Direct Method of Non-Autonomous Systems}\\
\vspace{3pt}
A scalar time-varying function $V(\mathbf{x},t)$ is \underline{locally positive definite} if $V( \mathbf{0},t) =0$ and there exists a time-invariant positive definite function $V_0(\mathbf{x})$ such that:
\begin{equation*}
\forall \; t \geq t_0 \quad V( \mathbf{x},t) \geq V_0(\mathbf{x})
\end{equation*}
Therefore a time-variant function is locally positive definite if it dominates a time-invariant locally positive definite function.\\
\vspace{6pt}
\textbf{Definition:} A scalar function $V(\mathbf{x},t)$ is \underline {decrescent} if $V(\mathbf{0},t) = 0$ and if there exists a time-invariant positive definite function $V_1(\mathbf{x})$ such that:
\begin{equation*}
\forall \; t \geq 0 \;,\; V(\mathbf{x},t) \leq V_1(\mathbf{x})
\end{equation*}
A function $V(\mathbf{x},t)$ is decrescent if it is dominated by a time-invariant positive definition function.
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis of Non-Autonomous Systems}
\small
\textbf{Example:} $V(\mathbf{x},t) = ( 1 + \sin ^2 t)(x_1^2 + x_2^2)$\\
This is a time-varying positive definite function because it dominates the function: $V_0(\mathbf{x}) = x_1^2 + x_2^2$. This function is also decrescent because it is dominated by the function $V_1(\mathbf{x}) = 2(x_1^2 + x_2^2)$.\\
\vspace{6pt}
\textbf{Chain Rule for Time Varying Functions:}
\begin{equation*}
\frac{d V}{d t} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial \mathbf{x}}\dot{\mathbf{x}} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial \mathbf{x}} f(\mathbf{x},t)
\end{equation*}
\textbf{Lyapunov Thm. for Non-Autonomous Systems}\\
If in a ball $\mathbf{B}_{R_0}$ around the equilibrium point $\mathbf{0}$, there exists a scalar function $V(\mathbf{x},t)$ with continuous partial derivatives such that:
\begin{enumerate}
\item $V$ is positive definite
\item $\dot{V}$ is negative semi-definite
\end{enumerate}
Then the equilibrium point $\mathbf{0}$ is stable in the sense of Lyapunov
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis of Non-Autonomous Systems}
\footnotesize
\textbf{Uniform stability and uniform asymptotic stability}\\
If in a ball $\mathbf{B}_{R_0}$ around the equilibrium point $\mathbf{0}$, there exists a scalar function $V(\mathbf{x},t)$ with continuous partial derivatives such that:
\begin{enumerate}
\item $V$ is positive definite
\item $\dot{V}$ is negative semi-definite
\item $V$ is decrescent
\end{enumerate}
the origin is \underline{uniformly stable}.\\
\vspace{6pt}
\textbf{Further:}\\
If $\dot{V} < 0$ then the equilibrium point is uniformly asymptotically stable.\\
\vspace{6pt}
\textbf{Global uniform asymptotic stability}\\
If in the \underline{whole state space} there exists a scalar function $V(\mathbf{x},t)$ with continuous partial derivatives such that:
\begin{enumerate}
\item $V$ is positive definite
\item $\dot{V}$ is negative semi-definite
\item $V$ is decrescent
\item $V(\mathbf{x},t)$ is radially unbounded
\end{enumerate}
the origin is \underline{globally uniformly asymptotically stable}.
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis of Non-Autonomous Systems}
\small
\textbf{Example:}
\begin{equation*}
\begin{aligned}
\dot{x}_1 &= -x_1(t) - e^{-2t} x_2(t)\\
\dot{x}_2 &= -x_1(t) - x_2(t)
\end{aligned}
\end{equation*}
To determine the stability of the equilibrium point at $\mathbf{0}$ , let us choose the following scalar function: $V(\mathbf{x},t) = x_1^2 + (1+e^{-2 t} )x_2^2$. \\
\vspace{6pt}
This function is positive definite, because it dominates the time-invariant positive function $x_1^2 + x_2^2$. It is also decrescent because it is dominated by the time-invariant positive definite function $x_1^2 + 2x_2^2$. Furthermore:
\begin{equation*}
\dot{V}(\mathbf{x},t) = -2(x_1^2 - x_1 x_2 + x_2^2(1+2 e^{-2t}))
\end{equation*}
Shows that
$\dot{V} \leq -2(x_1^2 - x_1 x_2 +x_2^2) = -(x_1 - x_2)^2 - x_1^2 - x_2^2$\\
\vspace{6pt}
Thus $\dot{V}$ is negative definite, and therefore, the point $\mathbf{0}$ is globally asymptotically stable.\\
\vspace{6pt}
\large
``Stability results for non-autonomous systems can be less intuitive than those for autonomous systems'' - Slotine\\
\begin{tiny}
Examples: Slotine (pp 111-113)
\end{tiny}
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis of Non-Autonomous Systems}
\small
\textbf{Lyapunov Analysis of Linear Time-Varying Systems}\\
\vspace{6pt}
Consider the linear-time varying system:
\begin{equation*}
\mathbf{\dot{x}} = \mathbf{A}(t) \mathbf{x}
\end{equation*}
``Since LTI systems are asymptotically stable if their eigenvalues all have negative real parts, once might be tempted to conjecture that systems of the type, $\mathbf{\dot{x}} = \mathbf{A}(t)\mathbf{x}$, will be stable if at any time $t \geq 0 $ all eigenvalues of $\mathbf{A}(t)$ all have negative real parts...'' However, this is not sufficient for stability of time-varying linear systems.\\
\textbf{Example:}
\begin{equation*}
\frac{d}{dt}\begin{bmatrix}
x_1 \\ x_2
\end{bmatrix} = \begin{bmatrix}
-1 & e^{2t} \\ 0 & -1
\end{bmatrix} \begin{bmatrix}
x_1 \\ x_2
\end{bmatrix}
\end{equation*}
Solving:
\begin{equation*}
x_2 = x_2(0) e^{-t} \quad \dot{x}_1 + x_1 = x_2(0)e^t
\end{equation*}
$x_2(0) e^t$ tends to infinity and we can see that $x_1$ will grow and the system is unstable. Although the eigenvalues of $\mathbf{A}$ are both equal to $-1$ at all times.\\
\textbf{}
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis of Non-Autonomous Systems}
\small
\textbf{Lyapunov Analysis of Linear Time-Varying Systems}\\
\vspace{6pt}
\textbf{Solution:} look at the eigenvalues of the symmetric matrix $\mathbf{P}(t) = \mathbf{A}(t) + \mathbf{A^T}(t)$.\\
\vspace{6pt}
The time varying system $\mathbf{\dot{x}} = \mathbf{A}(t) \mathbf{x}$ is asymptotically stable if the eigenvalues of the symmetric matrix $\mathbf{P}(t)$ remain strictly in the left-half complex plane.\\
\begin{equation*}
\exists \; \lambda > 0 , \forall \; i \; , \forall t \geq 0 , \lambda_i (\mathbf{A}(t) + \mathbf{A^T}(t)) \leq - \lambda
\end{equation*}
This can be readily shown using the Lyapunov function $V = \mathbf{x^T x}$ since:
\begin{equation*}
\dot{V} = \mathbf{x^T \dot{x}} + \mathbf{\dot{x}^T x} = \mathbf{x^T (A}(t)\mathbf{ + A^T}(t)\mathbf{) x} \leq -\lambda \mathbf{x^Tx} = - \lambda V
\end{equation*}
so that:
\begin{equation*}
\forall \; t \geq 0 , \quad 0 \leq \mathbf{x^Tx} = V(t) \leq V(0) e^{-\lambda t}
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis of Non-Autonomous Systems}
\small
\textbf{Perturbed Linear Systems}\\
Consider: $\mathbf{\dot{x}} = (\mathbf{A_1 + A_2}(t))\mathbf{x}$\\
\begin{itemize}
\item $\mathbf{A}_1$ is const. with all eigenvalues in the L.H.P. (\textit{Hurwitz}).
\item $\mathbf{A}_2(t) \rightarrow 0 $ as $t \rightarrow \infty$
\item $\int_{0}^{\infty} || \mathbf{A}_2(t) || dt < \infty$ (finite integral)
\end{itemize}
The system is Globally Asymptotically Stable\\
\vspace{6pt}
\textbf{Example:}\\
\begin{equation*}
\frac{d}{dt}
\begin{bmatrix}
x_1 \\ x_2 \\ x_3
\end{bmatrix} = \begin{bmatrix}
-(5 x_2^5 + x_3^8)x_1\\
-x_2 + 4 x_3^2\\
-(2 \sin t) x_3
\end{bmatrix}
\end{equation*}
Since $x_3$ tends towards zero exponentially, so does $x_3^2$, and therefore, so does $x_2$. Applying the above, the system is G.A.S.\\
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis of Non-Autonomous Systems}
\small
\textbf{Sufficient Smoothness Conditions on the $\mathbf{A}(t) Matrix$}\\
Consider the linear system: \begin{equation*}
\mathbf{\dot{x}} = \mathbf{A}(t)\mathbf{x}
\end{equation*} and assume that at any time $t \geq 0$, the eigenvalues of $\mathbf{A}(t)$ all have negative real parts:
\begin{equation*}
\exists \; \alpha >0 , \forall \; i, \forall \; t \geq 0, \lambda_i [\mathbf{A}(t)]\leq - \alpha
\end{equation*}
If, in addition, the matrix $\mathbf{A}(t)$ remains bounded, and
\begin{equation*}
\int_{0}^{\infty} \mathbf{A^T}(t) \mathbf{A}(t) dt < \infty
\end{equation*}
Then the system is \underline{Globally Asymptotically Stable}
\end{frame}
\begin{frame}
\frametitle{Instability Theorems}
\footnotesize
\textbf{First Instability Theorem}\\
If in a certain neighborhood $\Omega$ if the origin, there exists a cont. differentiable, decrescent scalar function $V(\mathbf{x},t)$ such that:
\begin{itemize}
\item $V(\mathbf{0},t) = 0, \; \forall \; t \geq t_0$
\item $V(\mathbf{x},t_0) > 0$ arb. close to the origin.
\item $\dot{V}(\mathbf{x},t_0) > 0 \in \Omega$
\end{itemize}
\textbf{Example:}\\
\vspace{6pt}
\begin{equation*}
\begin{aligned}
\dot{x}_1 &= 2 x_2 + x_1 ( x_1^2 + 2 x_2^4)\\
\dot{x}_2 &= -2 x_1 + x_2 (x_1^2 + x_2^4)
\end{aligned}
\end{equation*}
Linearization of this system yields: $\dot{x}_1 = 2 x_2$ and $\dot{x}_2 = -2 x_1$. With eigenvalues at $\pm 2j$. Indicating that Lyapunov's Linearization Method can not determine the instability or stability of this system.\\
However, if we take:
\begin{equation*}
V = \frac{1}{2} (x_1^2 + x_2^2) \Rightarrow \dot{V} = (x_1^2 + x_2^2)(x1^2 + x_2^4)
\end{equation*}
Because of the positive definiteness of $V$ and $\dot{V}$, the above thm. indicates the instability of the system.
\end{frame}
\begin{frame}
\frametitle{Instability Theorems}
\small
\textbf{Second Instability Theorem}\\
If in a certain neighborhood $\Omega$ of the origin, there exists a continuously differentiable, decrescent scalar function $V(\mathbf{x},t)$ satisfying
\begin{itemize}
\item $V(\mathbf{0},t_0) = 0$ and $V(\mathbf{x},t_0) > 0$ arb. close to the origin.
\item $\dot{V}(\mathbf{x},t) - \lambda V(\mathbf{x},t) \geq 0 \quad \forall \; t \geq t_0 \quad \forall \; \mathbf{x} \in \Omega \quad \lambda > 0$
\end{itemize}
then the equilibrium point $\mathbf{0}$ at time $t_0$ is unstable.\\
\vspace{6pt}
\textbf{Example:}
\begin{equation*}
\begin{aligned}
\dot{x}_1 &= x_1 + 3 x_2 \sin ^2 x_2 + 5 x_1 x_2 ^2 \sin ^2 x_1\\
\dot{x}_2 &= 3 x_1 \sin ^2 x_2 + x_2 - 5x_1^2 x_2 \cos^2 x_1
\end{aligned}
\end{equation*}
Select
\begin{equation*}
\begin{aligned}
V = \frac{1}{2}(x_1^2 - x_2^2) \Rightarrow \dot{V} &= x_1^2 - x_2^2 + 5x_1^2 x_2^2 \\
&= 2V + 5x_1^2 x_2^2
\end{aligned}
\end{equation*}
Then the equilibrium point at the origin is unstable.
\end{frame}
% \begin{frame}
% \frametitle{Instability Theorems}
% \small
% \textbf{Third Instability Theorem}\\
% Let $\Omega$ be a neighborhood of the origin. IF there exists a scalar function $V(\mathbf{x},t)$ with continuous first partial derivatives, decrescent in $\Omega$, and a region $\Omega_1 \subset \Omega$ such that:
% \begin{itemize}
% \item $V(\mathbf{x},t)$ and $\dot{V}(\mathbf{x},t)$ are P.D. in $\Omega_1$
% \item The origin is a boundary point of $\Omega_1$
% \item At the boundary points of $\Omega_1$ within $\Omega$, $V(\mathbf{x},t) = 0 \; \forall \; t \geq t_0$.
% \end{itemize}
% Then the equilibrium point $\mathbf{0}$ at $t_0$ is unstable.
% \end{frame}
% \begin{frame}
% \frametitle{Existence of Lyapunov Functions}
% \small
% \end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis using Barbalat's Lemma}
\small
We use invariant set theorems for autonomous systems to show that once the dynamics enters some region it never escapes, allowing for limit cycle stabilities. This also allows us to draw conclusions when $\dot{V} \leq 0$ (Negative Semi-Definite).\\
\vspace{6pt}
But what about non-autonomous systems?\\
\vspace{6pt}
\underline{Barbalat's Lemma} is a mathematic result concerning the asymptotic properties of functions and their derivatives, that may assist us for non-autonomous systems.\\
\vspace{6pt}
\textbf{Lemma:} If the differentiable function $f(t)$ has a finite limit as $t \rightarrow \infty$, and if $\dot{f}$ is uniformly continuous, then $\dot{f} \rightarrow 0 $ as $t \rightarrow \infty$.
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis using Barbalat's Lemma}
\small
\textbf{Definition:} a function $g(t)$ is \underline{continuous} on $
[0,\infty)$ if:
\begin{equation*}
\forall \; t_1 \geq 0, \; \forall \; R > 0, \; \exists \; \eta(R,t_1)>0, \forall \; t \geq 0, \; |t-t_1| < \eta \Rightarrow |g(t) - g(t_1)| < R
\end{equation*}\\
\textbf{Definition:} a function $g(t)$ is \underline{uniformly continuous} on $
[0,\infty)$ if:
\begin{equation*}
\forall \; R \geq 0, \; \exists \; \eta(R) > 0, \; \forall \; t_1 \geq 0, \forall \; t \geq 0, \; |t-t_1| < \eta \Rightarrow |g(t) - g(t_1)| < R
\end{equation*}
A function is uniformly continuous if one can always find an $\eta$ which does not depend on the specific point $t_1$. And the $\eta$ does not shrink as $t_1 \rightarrow \infty$.\\
\vspace{6pt}
\textbf{Definition:} Finite Difference Thm. (So long as a derivative is bounded a function is uniformly continuous).
\begin{equation*}
\forall \; t, \forall \; t_1, \exists \; t_2 | (t \leq t_2 \leq t_1) \quad \ni \quad g(t) - g(t_1) = \dot{g}(t_2) (t - t_1)
\end{equation*}
Therefore if $M>0$ is an upper bound on the function $|\dot{g}|$, one can always use $\eta = R/M$ to verify \underline{uniform continuity}.
\end{frame}
\begin{frame}
\frametitle{Lyapunov Analysis using Barbalat's Lemma}
\footnotesize
If a scalar function $V(\mathbf{x},t)$ satisfies the following:
\begin{itemize}
\item $V(\mathbf{x},t)$ is lower bounded
\item $\dot{V}(\mathbf{x},t)$ is negative semi- definite
\item $\dot{V}(\mathbf{x},t)$ is uniformly continuous in time
\end{itemize}
then $\dot{V}(\mathbf{x},t) \rightarrow 0$ as $t \rightarrow \infty$.\\
\vspace{6pt}
\textbf{Barbalat's Lemma Example:} Consider:
\begin{equation*}
\begin{aligned}
\dot{e} &= -e + g u(t)\\
\dot{g} &= -e u(t)
\end{aligned}
\end{equation*}
This function is non-autonomous because of some input, $u(t)$, is a function of time. Assuming that the input has some bounds:
\begin{equation*}
V = e^2 + g^2 \Rightarrow \dot{V} = 2e(-e+gu) + eg(-eu) = -2e^2 \leq 0
\end{equation*}
This implies that $V(t) \leq V(0)$, and therefore, that \underline{$e$ and $g$ are bounded}. But the invariant set thm. can not be used because the dynamics are non-autonomous.\\
Using Barbalat's Lemma, let us check the uniform continuity of $\dot{V}$.
\begin{equation*}
\ddot{V} = -4e(-e+gu)
\end{equation*}
This shows that $\dot{V}$ is bounded since u is bounded, $e$ and $g$ were shown to be bounded. Then $\dot{V}$ is unif. cont. $\therefore$ $e \rightarrow 0 $ as $t \rightarrow \infty$
\end{frame}
\begin{frame}
\frametitle{Floquet Theory}
\footnotesize
\textbf{Floquet Theory}
Consider the linear system $\dot{x} = A(t) x$, were $A(t) = A(t+T)$. \textit{There is some periodic nature in the linear system $A(t)$ with periodicity $T$}, and let $\Phi(t)$, be the state transition matrix. Then $\forall \; t \in \mathbb{R}$,
\begin{equation*}
\Phi(t+T) = \Phi(t)\Phi^{-1}(0)\Phi(T)
\end{equation*}
For each matrix $\mathbf{B}$ (possibly complex) such that:
\begin{equation*}
e^{T B} = \Phi^{-1}(0)\Phi(T)
\end{equation*}
There is a periodic (period $T$) matrix function $ \mathbf{P}(t)$ such that:
\begin{equation*}
\Phi(t) = \mathbf{P}(t)e^{t\mathbf{B}} \; \forall \; t \in \mathbb{R}
\end{equation*}
Also, there is a real matrix $\mathbf{R}$ and real periodic (period $2T$) matrix function $\mathbf{Q}(t)$ such that:
\begin{equation*}
\Phi(t) = \mathbf{Q}(t) e^{t \mathbf{R}} \; \forall \; t \in \mathbb{R}
\end{equation*}
This mapping $\Phi(t) = \mathbf{Q}(t)e^{t\mathbf{R}}$ gives rise to a time-dependent change of coordinates $(y=\mathbf{Q}^{-1}(t)x)$ under which our original system becomes a linear system with real constant coefficients $\dot{y} = \mathbf{R}y$. Since $Q(t)$ is continuous and periodic, it must be bounded. Thus the stability of the zeor solution for $y(t)$ and $x(t)$ is determined by the eigenvalues of $\mathbf{R}$.
\end{frame}
\begin{frame}
\frametitle{Floquet Theory}
\small
The representation $\Phi(t) = P(t)e^{tB}$ us called the \textit{Floquet normal form} for the fundamental matrix: $\Phi(t)$.\\
\vspace{6pt}
Floquet theory shows stability in \textit{Hill differential equations}, used in approximating the motion of the moon as a harmonic oscillator in a periodic gravitational field. -Wikipedia\\
Since $\Phi(0) = I_n$, we have $P(0) = I_n = P(T)$, hence $\Phi(T) = exp(RT)$.\\
\vspace{6pt}
The eigenvalues of the constant matrix $e^{RT}$, called the Floquet multipliers and describe the behavior (stability) of the period nature of $x(t)$.\\
\end{frame}
\begin{frame}
\frametitle{Power Form and Passivity Formalism}
\textbf{Power Form and Passivity}\\
Lyapunov functions are generalizations of the notion of energy in a dynamic system. \underline{Passivity} is a formalization describing Lyapunov functions composed of \textit{subsystems}.\\
Consider the conservation of energy formula:
\begin{equation*}
\frac{d}{dt}(\text{Stored Energy}) = \text{Net External Power In} + \text{Power Generated Internally}
\end{equation*}
Putting this into Lyapunov like terms, (i.e.) \underline{Power Form}:
\begin{equation*}
\dot{V}_1(t) = y_1^T u_1 - g_1(t)
\end{equation*}
where $y_1$ is the output of a dynamic system, $u_1$ is the input of the dynamic system.\\
\end{frame}
\begin{frame}
\frametitle{Power Form and Passivity Formalism}
\small
If we define the ``Power Flow'' to be the multiplication between our input $u$ and output $y$. We say a system is passive so long as $y^Tu \geq 0 $. (i.e. the power flow is always positive). \\
\vspace{6pt}
We can abstract the concept of power flow by looking at the \textit{u-y} graph. Where the y-axis is the output and the x-axis is the input. For this graph a passive system will only occupy the quadrants (I and III).\\
\vspace{6pt}
\textbf{Definition:} A system is:
\begin{enumerate}
\item passive if $y^Tu \geq 0$
\item lossless if $y^Tu = 0$
\end{enumerate}
\end{frame}
% \begin{frame}
% \frametitle{Power Form and Passivity Formalism}
% \small
% \end{frame}
\begin{frame}
\frametitle{Power Form and Passivity Formalism}
\footnotesize
\begin{columns}
\begin{column}{0.5\textwidth}
\textbf{Block Combinations \& Power Form}\\
Both parallel and feedback combinations of systems in the power form are still in the power form
\begin{equation*}
\mathbf{y^Tu = y_1^Tu_1+y_2^Tu_2}
\end{equation*}
We have the overall system to be:
\begin{equation*}
V = V_1 + V_2 \quad g = g_1 + g_2
\end{equation*}
More importantly, the combination of any system in power form in either feedback or parallel configuration is in power form determined by the sum of the systems:
\begin{equation*}
V = \sum_i V_i \quad g = \sum_i g_i
\end{equation*}
\end{column}
\begin{column}{0.5\textwidth}
\centering
\includegraphics[width = \linewidth]{Figures/Feedback.PNG}\\
Feedback Block Combination
\begin{equation*}
\begin{aligned}
&\mathbf{y^T u} = \mathbf{y_1 ^T ( u_1 + y_2 )}\\
&= \mathbf{ y_1^T u_1 + y_1^T y_2}\\
&= \mathbf{ y_1^T u_1 + u_2^T y_2 }
\end{aligned}
\end{equation*}
\includegraphics[width = \linewidth]{Figures/Parallel.PNG}\\
Parallel Block Combination
\begin{equation*}
\begin{aligned}
&\mathbf{y^T u} = \mathbf{(y_1 +y_2)^T u}\\
&= \mathbf{ y_1^T u + y_2^T u}\\
&= \mathbf{ y_1^T u_1 + y_2^T u_2 }
\end{aligned}
\end{equation*}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Positive Linear Systems}
\small
It is often possible to decompose a system into linear and nonlinear parts (Think Taylor Series Expansion). If the transfer function of the linear system is \underline{positive real}, then it has important properties that may lead to a Lyapunov function for the entire system.\\
\vspace{6pt}
Consider the $n^{th}$ order system with real coefficients in the numerator and denominator; $n \geq m$, where $n-m$ is the relative degree:
\begin{equation*}
h(s) = \frac{b_m s^m + b_{m-1}s^{m-1} + \cdots + b_0}{s^n + a_{n-1}s^{n-1} + \cdots + a_0}
\end{equation*}
\textbf{Definition:} A transfer function is \underline{Positive Real} if:
\begin{equation*}
\textrm{Re[} h(s)\text{]} \geq 0 \; \forall \; \text{Re}[s] \geq 0
\end{equation*}
It is strictly positive real if $h(s - \varepsilon)$ is positive real for some $\varepsilon >0$.
\textbf{Example: Positive Real Transfer Function}\\
\begin{equation*}
h(s) = \frac{1}{s+a}
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Positive Linear Systems}
\footnotesize
$h(s) = \frac{1}{s+a}$ is the transfer function for a first order system. With $a>0$, corresponding to the complex variable $s = \sigma + j \omega$.
\begin{equation*}
h(s) = \frac{1}{(\sigma + a) + j\omega} = \frac{\sigma + a - j\omega}{(\sigma + a)^2 + \omega^2}
\end{equation*}
Looking at the real part: $\text{Re}[h(s)] \geq 0$ if $\sigma \geq 0$. Thus $h(s)$ is a positive real function. In fact, $h(s)$ is strictly positive real. For example: by choosing $\varepsilon = a/2$.\\
\vspace{6pt}
Note that this can be difficult to perform for higher order systems.\\
\vspace{6pt}
\textbf{Theorem}: A transfer function is strictly positive real (SPR) iff
\begin{enumerate}
\item $h(s)$ is a strictly stable transfer function
\item the real part of $h(s)$ is strictly positive along the $j\omega$ axis $\forall \; \omega \geq 0, \text{Re}[h(j\omega)] >0$.
\end{enumerate}
The Necissary conditions for SPR are:
\begin{itemize}
\item $h(s)$ is strictly stable
\item Nyquist plot $h(j\omega)$ lies entirely in the right-half complex plane
\item $h(s)$ has relative degree of $0$ or $1$.
\item $h(s)$ is strictly minimum phase (all zeros in the left-half complex plane)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Positive Linear Systems}
\small
\textbf{Examples:}
\begin{equation*}
\begin{aligned}
h_1(s) = \frac{s-1}{s^2 + as +b} \quad h_2(s) = \frac{s+1}{s^2 - s +1} \\
h_3(s) = \frac{1}{s^2 + as + b} \quad h_4(s) = \frac{s+1}{s^2 + s+ 1} \quad h_5(s) = \frac{1}{s}
\end{aligned}
\end{equation*}
\begin{enumerate}
\item $h_1(s)$ is not minimum phase since it contains a zero in the right-half complex plane. This precludes $h_1(s)$ from meeting the necessary conditions to be \textit{Strictly Positive Real}.\\
\item $h_2$ is not stable since the poles do not all lie in the left-half complex plane. $\frac{1}{2} \pm \sqrt(5)$ are the poles.
\item $h_3(s)$ has relative degree greater than 1.
\item $h_4(j \omega) = \frac{j \omega + 1}{-\omega^2 + j\omega +1} = \frac{[j \omega + 1][- \omega^2 - j \omega + 1]}{[1 - \omega^2]^2 + \omega^2}$ and $\text{Re}[h_4(j\omega)] = \frac{-\omega^2 + 1 + \omega^2}{[1 - \omega^2]^2 + \omega^2} = \frac{1}{[1 - \omega^2]^2 + \omega^2} \quad \checkmark$
\item $h_5(s) = \frac{1}{s}$ is an integrator. $h(s = \sigma + j\omega) = \frac{\sigma - j\omega}{\sigma^2 + \omega^2}$. This is positive real, but not strictly positive real.
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Kalman-Yakubovich Lemma}
\small
A transfer function of a system in \textit{Strictly Positive Real} (SPR) if the following holds. Consider a controllable LTI system. (i.e.) the controllability matrix has full rank:
\begin{equation*}
C = [B \; AB \; A^2B \; \cdots \; A^{n-1}B]
\end{equation*}
and for the system:
\begin{equation*}
\begin{aligned}
\dot{x} &= Ax + bu\\
y &= c^T x
\end{aligned}
\end{equation*}
The transfer function $h(s) = C^T[sI - A]^{-1}b$ is strictly positive real iff:
\begin{equation*}
\exists \; P>0, \exists Q >0 \ni A^T P + P A = -Q \; \& \; Pb = c
\end{equation*}
\end{frame}
% \begin{frame}
% \frametitle{The Passivity Formalism}
% \small
% \end{frame}
% \begin{frame}
% \frametitle{Absolute Stability}
% \small
% \end{frame}
% \begin{frame}
% \frametitle{Establishing Boundedness Signals}
% \small
% \end{frame}
% \begin{frame}
% \frametitle{Existence and Unicity Solutions}
% \small
% \end{frame}
%%
%% Blank Slide
%%
% \begin{frame}
% \frametitle{}
% \end{frame}
%%
%% Dual Column Slide
%%
% \begin{frame}
% \frametitle{1st Order System - Phase Plane Example}
% \begin{columns}
% \begin{column}{0.5\textwidth}
% Text 1
% \end{column}
% \begin{column}{0.5\textwidth}
% Text 2
% \end{column}
% \end{columns}
% \end{frame}
\end{document}