forked from gioblu/PJON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEthernetLink.h
1279 lines (1094 loc) · 42.4 KB
/
EthernetLink.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* EthernetLink and Ethernet strategies contributed by Fred Larsen
This EthernetLink class transfers packets of data over
TCP/IP Ethernet connections.
It may accept incoming connections and send ACK back for each incoming
package, it may connect to another object in another device and deliver a
packet and get an ACK back, or it may do both -- connect to another device
for delivering packages and accept incoming connections and packages for
bidirectional transfer.
When establishing connections, the target must be registered with the add_node
function for setting the IP and port along with a unique id that is used for
referring to the target in all other functions.
An EthernetLink may work in multiple ways when bidirectional:
1. One-to-one connection with another EthernetLink. In this mode, using the
keep_connection is recommended because it reduces network activity and
speeds things up dramatically. In this mode, there are three options:
A. When running on a firewall-free network one socket can be created in each
direction, allowing for bidirectional "full-duplex" (as far as that goes
for single-threaded code), with data being buffered in each direction. It
requires each side to know about each other's address, but delivers
higher throughput than a single_socket approach. An EthernetLink object
in this mode has one node added by add_node, and both sides calls
start_listening to accept incoming connections. If there are multiple
objects on one device, each has to listen to a unique port number
(specified in the start_listening function call).
B. Set single_socket to mave a master-slave scenario where one side, the
initiator, creates a socket connection and sends any packages it may
have and then receives any package waiting to be sendt in the opposite
direction. This requires the initiator to know where to connect, but not
the other way around. This is suitable for connections through the
Internet because a firewall opening only has to be opened in one place.
An EthernetLink object in this mode has one node added by add_node
(the initiator side), or calls the start_listening function to start
listening (the receiver side). If there are multiple receiving objects
on one device, each has to listen to a unique port number
(specified in the start_listening function call).
C. Set single_initiate_direction to have one device create two sockets to
the other device, using one for each packet direction. This is a variant
of B) that is firewall friendly and more efficient, but uses one more
socket, and cannot be run on the simplest Ethernet cards with only one
available socket. This mode has 3-4 times the speed of B) and does not
do polling so it will not generate network traffic when idle.
2. If running a one-to-many or many-to-many scenario the keep_connection
should be deactivated because then one incoming socket would block others
from connecting. Not using keep_connection drops the transfer speed some, though.
A. When running on a firewall-free network each packet is delivered through
a dedicated connection created for delivering that package. After
delivery and ACK the socket is closed. All devices can send to and
receive from each other.
B. Using the single_socket approach will use a master-slave like approach
where only the initiators need to know the address of the receiver(s),
for easier firewall traversal. After the two-way transfer of packets on
the same connection, the connection will be closed so that the receiver
is ready for another connection. This requires only _one firewall
opening_ for bidirectional transfer with 255 others.
Limitations for the different modes when using the W5100 based Ethernet shield
with a 4 socket limit:
1A. Two EthernetLink objects can be used for bidirectional communication
with two sites.
1B. Four EthernetLink objects can be used for bidirectional communication
with four sites.
2A. As the sockets are only used temporarily each object can accept
connections from 255 others, and deliver packets to 255 others. Up to
two objects can be used in one device, if multiple listening ports are
needed. Each object can have 1 to 255 nodes added by add_node, and can
deliver to all. There can be up to three objects in each device if needed.
One socket must remain free for outgoing connections.
2B. As 2A, each receiver can receive packets from and send packets to 255
initiators, using a _single listening port_. There can be four receiver
objects in on device, or three receiver objects and an unlimited number
of initiator objects that will be able to send to and receive from to up
to 255 sites each.
Limitations for the different modes when using the ENC28J60 based Ethernet
shield with a 1 socket limit:
1A. Not available.
1B. One EthernetLink object can be used for fast bidirectional communication
with one site.
1C. Not available.
2A. Not available.
2B. One receiver can receive from and deliver packets to unlimited initiators,
_or_ unlimited initator objects can send to and receive from to up to
255 sites each
Note: To use the ENC28J60 shield instead of the WIZ5100 shield, include
<UIPEthernet.h> before EthernetLink.h.
PJON and EthernetLink
The EthernetLink can be used standalone for simple delivery between two
devices. But the EthernetLink is also used as a tool by the EthernetTCP strategy
of PJON. A site consisting of one or more buses of devices communicating
through PJON, wired and/or wirelessly, can be connected seamlessly with
multiple other similar sites in other places of the world, communicating
through Internet with minimal firewall configuration.
NOTE: The W5100 full-size Ethernet shields come in multiple variants. If you
get a problem where the card is not starting after plugging in the
power, check if there is small resistor network behind the Ethernet
outlet, with one resistor having printed "511" on it. If so, try
another brand. Even startup delays do not fix this, but it can be solved
with a capacitor+resistor, search for it.
NOTE: If needing single_socket functionality with ACK (polling mode),
define ETCP_SINGLE_SOCKET_WITH_ACK. The program size has been reduced by
only including this when needed.
The same goes for ETCP_SINGLE_DIRECTION. It is not included by default
to reduce program size. Define this when needed.
*/
#pragma once
#ifdef ARDUINO
#include "../../interfaces/ARDUINO/TCPHelper_ARDUINO.h"
#else
#include "../../interfaces/LINUX/TCPHelper_POSIX.h"
const char *F(const char *s) { return s; }
#define Serial DummyPrint
struct DummyPrint {
static void print(const char *s) { printf("%s", s); }
static void print(int n) { printf("%d", n); }
static void println(const char *s) { printf("%s\n", s); }
static void println(int n) { printf("%d\n", n); }
} DummyPrint;
#endif
// Constants
#ifndef PJON_ACK
#define PJON_ACK 6
#endif
// Internal constants
#ifndef PJON_FAIL
#define PJON_FAIL 0x100
#endif
#ifndef ETCP_MAX_REMOTE_NODES
#define ETCP_MAX_REMOTE_NODES 10
#endif
#define ETCP_DEFAULT_PORT 7000
/* The maximum packet size to be transferred, this protects again buffer overflow.
Set this to a size that is guaranteed to be available in RAM during runtime,
depending on the hardware and software. */
#ifndef ETCP_MAX_PACKET_SIZE
#define ETCP_MAX_PACKET_SIZE 300
#endif
/* If an incoming packet has not arrived for some time, disconnect the socket so
it will be reconnected on demand. The timeout is in ms.
The reason for this is that in some cases an idle socket may have gotten
disconnected without it being detected, unless trying to write to it.
So we could be waiting for data that never arrives. */
#ifndef ETCP_IDLE_TIMEOUT
#define ETCP_IDLE_TIMEOUT 30000ul
#endif
// Magic number to verify that we are aligned with telegram start and end
#define ETCP_HEADER 0x18ABC427ul
#define ETCP_FOOTER 0x9ABE8873ul
#define ETCP_SINGLE_SOCKET_HEADER 0x4E92AC90ul
#define ETCP_SINGLE_SOCKET_FOOTER 0x7BB1E3F4ul
#define ETCP_CONNECTION_HEADER_A 0xFEDFED67ul // Primary socket, packets in initiated direction
#define ETCP_CONNECTION_HEADER_A_ACK 0xFEDFED68ul // Same, but request ACK for all packets
#define ETCP_CONNECTION_HEADER_B 0xFEDFED77ul // Reverse socket, packets in reverse direction
/* UIPEthernet library used for the ENC28J60 based Ethernet shields has the
correct return value from the read call, while the standard Ethernet library
does not follow the standard! */
#if defined(ARDUINO) && !defined(UIPETHERNET_H)
#define ETCP_ERROR_READ 0
#else
#define ETCP_ERROR_READ -1
#endif
typedef void (*link_receiver)(
uint8_t id,
const uint8_t *payload,
uint16_t length,
void *callback_object
);
typedef void (*link_error)(
uint8_t code,
uint8_t data
);
class TmpBuffer {
uint8_t *buf = NULL;
uint16_t len = 0;
public:
TmpBuffer(uint16_t size) { len = size; buf = new uint8_t[size]; }
~TmpBuffer() { if (buf) delete buf; }
uint8_t* operator()() { return buf; }
uint16_t size() { return len; }
};
class EthernetLink {
private:
// ********* Dynamic members ************
TCPHelperServer *_server = NULL;
// Connection for writing outgoing packets
TCPHelperClient _client_out;
// Connection for reading incoming packets
TCPHelperClient _client_in;
// The id of the remove device/node that we have connected to
int16_t _current_device = -1;
// When a socket is received, the connection header specifies if ACKs are wanted
bool _ack_requested = false;
// Remember the connection statistics
uint32_t _connection_time = 0;
uint32_t _connection_count = 0;
uint32_t _last_receive_time = 0;
// ********* Configuration ************
link_receiver _receiver = NULL;
link_error _error = NULL;
void *_callback_object = NULL;
// Local node
uint8_t _local_id = 0;
uint8_t _local_ip[4];
uint16_t _local_port = ETCP_DEFAULT_PORT;
// Remote nodes
uint8_t _remote_node_count = 0;
uint8_t _remote_id[ETCP_MAX_REMOTE_NODES];
uint8_t _remote_ip[ETCP_MAX_REMOTE_NODES][4];
uint16_t _remote_port[ETCP_MAX_REMOTE_NODES];
// Keep sockets permanently open instead of reconnecting for each transfer
bool _keep_connection = false;
// Do bidirectional transfer on a single socket
bool _single_socket = false;
// Request an immediate ACK for eack packet delivery to ensure guaranteed delivery
bool _request_ack = false;
// To avoid deadlocks while connecting (if receiver tries to connect back simultanously),
// receive and discard packets while doing non-blocking connect. This should resolve deadlocks,
// and the missing ACK should make the packet being resent later.
bool _receive_and_discard = false;
// With single_socket = false, there is one socket for each packet direction.
// Normally the sockets are initiated from the side sending the packet.
// By setting initiate_both_sockets_in_same direction, both sockets can be
// initiated from one of the devices, to simplify firewall setup, or for letting
// only one of the devices have a static IP address.
// This should only be used with _keep_connection = true, and is meant for permanent
// one-to-one links.
bool _initiate_both_sockets_in_same_direction = false;
// Whether to be the side initiating both sockets or not
bool _initiator = true;
public:
void init() {
memset(_local_ip, 0, 4);
};
int16_t find_remote_node(uint8_t id) {
for(uint8_t i = 0; i < _remote_node_count; i++)
if(_remote_id[i] == id)
return i;
return -1;
};
int16_t read_bytes(
TCPHelperClient &client,
uint8_t *contents,
uint16_t length,
uint16_t timeout_ms = 2000
) {
int32_t total_bytes_read = 0, bytes_read = ETCP_ERROR_READ;
uint32_t start_ms = PJON_MILLIS();
/* NOTE: The Arduino standard recv/read functions returns
-1 if no data waiting
0 if socket closed
This is the opposite of POSIX. */
do {
#ifdef HAS_ETHERNETUDP // Avoid using blocking read until there is data present
int16_t avail = 0;
while(
client.connected() &&
(avail = client.available()) <= 0 &&
(uint32_t)(PJON_MILLIS() - start_ms) < min(1000, timeout_ms)
) PJON_DELAY_MICROSECONDS(250);
if (avail <= 0) continue;
#endif
bytes_read = client.read(
&contents[total_bytes_read],
length - total_bytes_read
);
if(bytes_read > 0) total_bytes_read += bytes_read;
} while(
bytes_read != ETCP_ERROR_READ &&
total_bytes_read < length &&
(uint32_t)(PJON_MILLIS() - start_ms) < timeout_ms
);
if(bytes_read == ETCP_ERROR_READ) {
stop(client); // Lost connection
#ifdef ETCP_ERROR_PRINT
Serial.println(F("Read failed, closing cl"));
#endif
}
return total_bytes_read;
};
// Read a package from a connected client (incoming or outgoing socket) and send ACK
uint16_t receive(TCPHelperClient &client, bool wait) {
uint16_t return_value = PJON_FAIL;
uint32_t start_ms = PJON_MILLIS(), avail;
if (wait) {
while(
client.connected() &&
(avail = client.available()) <= 0 &&
(uint32_t)(PJON_MILLIS() - start_ms) < 1000
) PJON_DELAY_MICROSECONDS(250);
} else avail = client.connected() ? client.available() : 0;
if(avail > 0) {
#ifdef ETCP_DEBUG_PRINT
Serial.println(F("Recv from cl"));
#endif
// Locate and read encapsulation header (4 bytes magic number)
bool ok = read_until_header(client, ETCP_HEADER);
#ifdef ETCP_DEBUG_PRINT
Serial.print(F("Read header, stat "));
Serial.println(ok);
#endif
// Read sender device id (1 byte) and length of contents (4 bytes)
int16_t bytes_read = 0;
uint8_t sender_id = 0;
uint32_t content_length = 0;
if(ok) {
uint8_t buf[5];
bytes_read = read_bytes(client, buf, 5);
if(bytes_read != 5) ok = false;
else {
memcpy(&sender_id, buf, 1);
memcpy(&content_length, &buf[1], 4);
content_length = ntohl(content_length);
if(content_length == 0) ok = 0;
}
}
// Protect against too large packets
if (content_length > ETCP_MAX_PACKET_SIZE) return PJON_FAIL;
// Read contents and footer
TmpBuffer buf(content_length);
if(ok) {
bytes_read = read_bytes(client, (uint8_t*)buf(), content_length);
if((uint32_t)bytes_read != content_length) ok = false;
}
// Read footer (4 bytes magic number)
if(ok) {
uint32_t foot = 0;
bytes_read = read_bytes(client, (uint8_t*) &foot, 4);
if(bytes_read != 4 || foot != htonl(ETCP_FOOTER)) ok = false;
}
#ifdef ETCP_DEBUG_PRINT
Serial.print(F("Stat rec: "));
Serial.print(ok);
Serial.print(" len: ");
Serial.println(content_length);
#else
#if defined(ETCP_ERROR_PRINT)
if (!ok) {
Serial.print(F("FAIL rec: "));
Serial.println(bytes_read);
}
#endif
#endif
return_value = ok ? PJON_ACK : PJON_FAIL;
if (ok) _last_receive_time = PJON_MILLIS();
if (_ack_requested && !_receive_and_discard) {
// Write PJON_ACK
int8_t acklen = 0;
if(ok) {
uint16_t r = htons(return_value);
acklen = client.write((uint8_t*) &r, 2);
client.flush();
}
#ifdef ETCP_DEBUG_PRINT
Serial.print("Sent ");
Serial.print(ok ? "PJON_ACK: " : "PJON_FAIL: ");
Serial.println(acklen);
#else
(void)acklen; // Avoid "set but not used" warning
#if defined(ETCP_ERROR_PRINT)
if (!ok) Serial.println("FAILURE sending ACK");
#endif
#endif
}
// Call receiver callback function
if(ok && !_receive_and_discard && content_length > 0)
_receiver(sender_id, (uint8_t*)buf(), content_length, _callback_object);
if (!ok) disconnect_in();
}
return return_value;
};
bool connect(uint8_t id) {
// Locate the node's IP address and port number
int16_t pos = find_remote_node(id);
// Determine if to disconnect
bool disconnect = !_keep_connection,
reverse = _initiate_both_sockets_in_same_direction && _initiator;
// Break existing connection if not connected to the wanted server
if(!disconnect && _client_out && _current_device != id) {
// Connected, but to the wrong device
#ifdef ETCP_DEBUG_PRINT
Serial.println(F("Switch conn to another srv"));
#endif
disconnect = true;
_current_device = -1;
}
// Check if established sockets have been disconnected
if (!disconnect && _client_out && !_client_out.connected()) disconnect = true;
#ifdef ETCP_SINGLE_DIRECTION
if (!disconnect && reverse && _client_in && !_client_in.connected()) disconnect = true;
if (!disconnect && reverse && (!_client_in || !_client_out)) disconnect = true;
if (!disconnect && reverse && _client_in && got_receive_timeout()) {
#ifdef ETCP_ERROR_PRINT
Serial.println(F("Receive timeout, disconn."));
#endif
disconnect = true;
}
#endif
if (disconnect) disconnect_out();
// NOTE: From this point we can avoid using the expensive connected() call
bool connected = _client_out;
#ifdef ETCP_DEBUG_PRINT
if (!connected) {
Serial.print(F("Conn to srv pos="));
Serial.println(pos);
}
#endif
if(pos < 0) return false;
// Try to connect to server if not already connected
bool did_connect = false;
if(!connected) {
#ifdef ETCP_DEBUG_PRINT
Serial.println("Conn..");
#endif
#ifdef HAS_ETHERNETUDP // Arduino, otherwise POSIX
connected = _client_out.connect(_remote_ip[pos], _remote_port[pos]);
#else
// Use non-blocking calls, and receive and discard incoming packets
if (_client_out.prepare_connect(_remote_ip[pos], _remote_port[pos])) {
int8_t status = 0;
uint32_t start = PJON_MILLIS();
do {
if (!_initiate_both_sockets_in_same_direction && !_single_socket && _server) {
TCPHelperClient client = _server->available();
if (client) client.stop();
}
status = _client_out.try_connect();
if (status == 0) PJON_DELAY_MICROSECONDS(PJON_RANDOM(250)); // Avoid misusing CPU while waiting
} while (status == 0 && (uint32_t)(PJON_MILLIS()-start)<4000);
connected = (status == 1);
}
#endif
#ifdef ETCP_DEBUG_PRINT
Serial.println(connected ? "Conn to srv" : "Failed conn to srv");
#endif
if(connected) {
// Adjust connection header A to include ACK request flag
uint32_t conn_header = htonl(_request_ack ? ETCP_CONNECTION_HEADER_A_ACK : ETCP_CONNECTION_HEADER_A);
if (_client_out.write((uint8_t*) &conn_header, 4) != 4) {
connected = false;
#ifdef ETCP_ERROR_PRINT
Serial.println(F("Disconn. failed write connhead"));
#endif
}
}
if (!connected) stop(_client_out); else did_connect = true;
}
bool connected_rev = false;
#ifdef ETCP_SINGLE_DIRECTION
if (connected && reverse) {
connected_rev = _client_in;
if (!connected_rev) {
#ifdef ETCP_DEBUG_PRINT
Serial.println("Conn rev..");
#endif
uint32_t start = PJON_MILLIS();
do {
connected_rev = _client_in.connect(_remote_ip[pos], _remote_port[pos]);
} while (!connected_rev && (uint32_t)(PJON_MILLIS()-start) < 2000);
#ifdef ETCP_DEBUG_PRINT
Serial.println(connected_rev ? F("Conn rev to srv") : F("Failed rev conn to srv"));
#endif
if(connected_rev) {
uint32_t conn_header = htonl(ETCP_CONNECTION_HEADER_B);
if (_client_in.write((uint8_t*) &conn_header, 4) != 4) {
connected_rev = false;
#ifdef ETCP_ERROR_PRINT
Serial.println(F("Disconn rev. failed write connhead"));
#endif
}
}
if (connected_rev) {
// ACK active on both sockets or none in this mode
_ack_requested = _request_ack;
did_connect = true;
_last_receive_time = PJON_MILLIS(); // Count the connection as a receive action
}
}
}
#endif
if (did_connect) { // Gather a litte connection information
_connection_time = PJON_MILLIS();
_connection_count++;
if (_single_socket) _ack_requested = _request_ack; // Same mode in both directions
}
if (!connected || (reverse && !connected_rev)) {
#ifdef ETCP_ERROR_PRINT
Serial.print(F("Fail conn, closing "));
Serial.print(connected);
Serial.println(connected_rev);
#endif
disconnect_out();
_current_device = -1;
PJON_DELAY(10); // Slow down if failure
return false; // Server is unreachable or busy
}
else _current_device = id; // Remember who we are connected to
return true;
};
void stop(TCPHelperClient &client) {
client.stop();
};
void disconnect_in() {
#ifdef ETCP_DEBUG_PRINT
if (_client_in || (_initiate_both_sockets_in_same_direction && _client_out))
Serial.println(F("Disconn in&rev"));
#endif
#ifdef ETCP_SINGLE_DIRECTION
if (_initiate_both_sockets_in_same_direction && _client_out) stop(_client_out);
#endif
if (_client_in) stop(_client_in);
}
void disconnect_out() {
#ifdef ETCP_DEBUG_PRINT
if (_client_out || (_initiate_both_sockets_in_same_direction && _client_in))
Serial.println(F("Disconn out&rev"));
#endif
if (_client_out) stop(_client_out);
#ifdef ETCP_SINGLE_DIRECTION
if (_initiate_both_sockets_in_same_direction && _client_in) stop(_client_in);
#endif
}
bool accept() {
// Determine if to disconnect
bool disconnect = !_keep_connection;
#ifdef ETCP_SINGLE_DIRECTION
bool reverse = _initiate_both_sockets_in_same_direction && !_initiator;
#endif
if (!disconnect && _client_in && !_client_in.connected()) disconnect = true;
#ifdef ETCP_SINGLE_DIRECTION
if (!disconnect && reverse && _client_out && !_client_out.connected()) disconnect = true;
if (!disconnect && reverse && (!_client_in || !_client_out)) disconnect = true;
#endif
if (!disconnect && _client_in && got_receive_timeout()) {
#ifdef ETCP_ERROR_PRINT
Serial.println(F("Receive timeout, disconn."));
#endif
disconnect = true;
}
if (disconnect) disconnect_in();
// NOTE: From this point we can avoid using the expensive connected() call
// Accept new incoming connection
bool did_connect = false, connected = _client_in;
if (!connected) {
_client_in = _server->available();
connected = _client_in;
#ifdef ETCP_DEBUG_PRINT
if(connected) Serial.println(F("Accepted"));
#endif
if (connected) {
uint32_t connection_header = 0;
bool header_ok = false;
if (read_bytes(_client_in, (uint8_t*) &connection_header, 4) == 4) {
if (connection_header == htonl(ETCP_CONNECTION_HEADER_A)) {
header_ok = true;
_ack_requested = false;
} else if (connection_header == htonl(ETCP_CONNECTION_HEADER_A_ACK)) {
header_ok = true;
_ack_requested = true;
}
}
if (header_ok) did_connect = true;
else {
disconnect_in();
connected = false;
#ifdef ETCP_ERROR_PRINT
Serial.println(F("Disconn. no connhead"));
#endif
}
}
}
// Accept reverse connection if relevant
#ifdef ETCP_SINGLE_DIRECTION
if (connected && reverse && !_client_out) {
#ifdef ETCP_DEBUG_PRINT
Serial.println(F("Lst rev"));
#endif
// ACK active on both sockets or none in this mode
_request_ack = _ack_requested;
bool connected_reverse = false;
uint32_t start = PJON_MILLIS();
do {
_client_out = _server->available();
} while (!_client_out && (uint32_t)(PJON_MILLIS()-start) < 2000);
if(_client_out) {
#ifdef ETCP_DEBUG_PRINT
Serial.println("Accept rev OK");
#endif
uint32_t connection_header = 0;
if (read_bytes(_client_out, (uint8_t*) &connection_header, 4) == 4 &&
connection_header == htonl(ETCP_CONNECTION_HEADER_B))
connected_reverse = true;
else {
#ifdef ETCP_ERROR_PRINT
Serial.println(F("Disconn. rev no connhead"));
#endif
}
} else {
#ifdef ETCP_ERROR_PRINT
Serial.println(F("Accept rev timed out"));
#endif
}
if (connected_reverse) did_connect = true;
else {
#ifdef ETCP_ERROR_PRINT
Serial.print(F("Fail accept, closing, "));
Serial.print(connected);
Serial.println(connected_reverse);
#endif
connected = false;
disconnect_in();
}
}
#endif
if (did_connect) {
_connection_time = PJON_MILLIS();
_connection_count++;
_last_receive_time = PJON_MILLIS(); // Count the connection as a receive action
}
return connected;
};
void disconnect_out_if_needed(uint16_t result) {
//bool connected = _client_out.connected();
if(_client_out && (result == PJON_FAIL || !_keep_connection)) {
stop(_client_out);
#ifdef ETCP_DEBUG_PRINT
Serial.print("Disconn outcl. OK=");
Serial.println(result == PJON_ACK);
#endif
}
};
bool got_receive_timeout() { return (uint32_t)(PJON_MILLIS() - _last_receive_time) > ETCP_IDLE_TIMEOUT; }
bool disconnect_in_if_needed() {
if(_client_in && !_keep_connection) {
#ifdef ETCP_DEBUG_PRINT
Serial.println("Disc. inclient.");
#endif
stop(_client_in);
}
return true;
};
uint16_t send(
TCPHelperClient &client,
uint8_t id,
const uint8_t *packet,
uint16_t length
) {
// Assume we are connected. Try to deliver the package
uint32_t head = htonl(ETCP_HEADER), foot = htonl(ETCP_FOOTER), len = htonl(length);
uint8_t buf[9];
memcpy(buf, &head, 4);
memcpy(&buf[4], &id, 1);
memcpy(&buf[5], &len, 4);
if (!_single_socket && _client_in) if (_client_in.available() > 0) return PJON_BUSY;
#ifdef HAS_ETHERNETUDP
bool ok = client.write((uint8_t*) buf, 9) == 9;
if(ok) ok = client.write((uint8_t*) packet, length) == length;
if(ok) ok = client.write((uint8_t*) &foot, 4) == 4;
#else
// On a POSIX capable device we expect to have enough memory to collect all into one buffer
// so that it will not be sent as 3 separate packets when TCP_NODELAY is active.
TmpBuffer totalbuf(9+length+4);
memcpy(totalbuf(), buf, 9);
memcpy(&(totalbuf()[9]), packet, length);
memcpy(&(totalbuf()[9+length]), &foot, 4);
bool ok = client.write((uint8_t*)totalbuf(), 9+length+4) == (9+length+4);
#endif
if(ok) client.flush();
#ifdef ETCP_DEBUG_PRINT
Serial.print("Write stat: ");
Serial.println(ok);
#endif
uint16_t result = PJON_FAIL;
if (_request_ack) {
// Read ACK
if(ok) {
uint16_t code = 0;
int16_t status = read_bytes(client, (uint8_t*) &code, 2);
code = ntohs(code);
if(status == 2 && code == PJON_ACK) result = code; else ok = false;
}
#ifdef ETCP_DEBUG_PRINT
Serial.print("PJON_ACK stat: ");
Serial.print(result == PJON_ACK);
Serial.println(ok ? " OK" : " FAIL");
#endif
} else {
result = ok ? PJON_ACK : PJON_FAIL;
}
return result; // PJON_FAIL, PJON_ACK
};
/* Do ACKed bidirectional transfer of packets over a single socket connection by
using a master-slave mode where the master connects and delivers packets
or a placeholder, then reads packets or placeholder back before closing
the connection (unless letting it stay open). */
#ifdef ETCP_SINGLE_SOCKET_WITH_ACK
uint16_t single_socket_transfer(
TCPHelperClient &client,
int16_t id,
bool master,
const uint8_t *contents,
uint16_t length
) {
if(master) { // Creating outgoing connections
// Connect or check that we are already connected to the correct server
bool connected = connect(id);
#ifdef ETCP_DEBUG_PRINT
//Serial.println(connected ? "Out conn" : "No out conn");
#endif
if(!connected) return PJON_FAIL;
// Send singlesocket header and number of outgoing packets
bool ok = true;
uint32_t head = htonl(ETCP_SINGLE_SOCKET_HEADER);
uint8_t numpackets_out = length > 0 ? 1 : 0;
uint8_t buf[5];
memcpy(buf, &head, 4);
memcpy(&buf[4], &numpackets_out, 1);
if(ok) ok = client.write((uint8_t*) &buf, 5) == 5;
if(ok) client.flush();
// Send the packet and read PJON_ACK
if(ok && numpackets_out > 0) {
ok = send(client, id, contents, length) == PJON_ACK;
#ifdef ETCP_DEBUG_PRINT
Serial.print(F("++++Sent p, ok="));
Serial.println(ok);
#endif
}
// Read number of incoming messages
uint8_t numpackets_in = 0;
if(ok) ok = read_bytes(client, &numpackets_in, 1) == 1;
#ifdef ETCP_DEBUG_PRINT
if (!ok || numpackets_in > 0) {
Serial.print("Read np_in: ");
Serial.print(numpackets_in);
Serial.println(ok ? " OK" : " FAIL");
}
#endif
// Read incoming packages if any
for(uint8_t i = 0; ok && i < numpackets_in; i++) {
while(client.available() < 1 && client.connected()) ;
ok = receive(client, true) == PJON_ACK;
#ifdef ETCP_DEBUG_PRINT
Serial.print(F("------->Read p ")); Serial.print(i);
Serial.print(F(", ok=")); Serial.println(ok);
#endif
}
// Write singlesocket footer for the whole thing
uint32_t foot = htonl(ETCP_SINGLE_SOCKET_FOOTER);
if(ok) ok = client.write((uint8_t*) &foot, 4) == 4;
if(ok) client.flush();
#ifdef ETCP_DEBUG_PRINT
// Serial.print("Sent ss foot, ok=");
// Serial.println(ok);
#endif
// Disconnect
uint16_t result = ok ? PJON_ACK : PJON_FAIL;
disconnect_out_if_needed(result);
#ifdef ETCP_DEBUG_PRINT
if (numpackets_in > 0 || numpackets_out > 0) {
Serial.print("INOUTm "); Serial.print(numpackets_in); Serial.print(numpackets_out);
Serial.println(ok ? " OK" : " FAIL");
}
#endif
// Return PJON_ACK if successfully sent or received a packet
return contents == NULL ? (numpackets_in > 0 ? result : PJON_FAIL) : result;
} else { // Receiving incoming connections and packets and request
if (client && got_receive_timeout()) {
#ifdef ETCP_ERROR_PRINT
Serial.println(F("Receive timeout, disconn."));
#endif
stop(client);
}
// Wait for and accept connection
bool connected = accept();
#ifdef ETCP_DEBUG_PRINT
//Serial.println(connected ? "In conn" : "No in conn");
#endif
if(!connected) return PJON_FAIL;
// Read singlesocket header
bool ok = read_until_header(client, ETCP_SINGLE_SOCKET_HEADER);
if (ok) _last_receive_time = PJON_MILLIS();
#ifdef ETCP_DEBUG_PRINT
//Serial.print("Read ss head, ok=");
//Serial.println(ok);
#endif
// Read number of incoming packets
uint8_t numpackets_in = 0;
if(ok) ok = read_bytes(client, (uint8_t*) &numpackets_in, 1) == 1;
#ifdef ETCP_DEBUG_PRINT
if (!ok || numpackets_in > 0) {
Serial.print("Read np_in: ");
Serial.print(numpackets_in);
Serial.println(ok ? " OK" : " FAIL");
}
#endif
// Read incoming packets if any, send ACK for each
for(uint8_t i = 0; ok && i < numpackets_in; i++) {
while(client.available() < 1 && client.connected()) ;
ok = receive(client, true) == PJON_ACK;
#ifdef ETCP_DEBUG_PRINT
Serial.print(F("Read p ")); Serial.print(i); Serial.print(F(", ok="));
Serial.println(ok);
#endif
}
// Write number of outgoing packets
uint8_t numpackets_out = length > 0 ? 1 : 0;
if(ok) ok = client.write((uint8_t*) &numpackets_out, 1) == 1;
if(ok) client.flush();
// Write outgoing packets if any
if(ok && numpackets_out > 0) {
ok = send(client, id, contents, length) == PJON_ACK;
#ifdef ETCP_DEBUG_PRINT
Serial.print(F("Sent p, ok="));
Serial.println(ok);
#endif
}
// Read singlesocket footer
if(ok) {
uint32_t foot = 0;
ok = read_bytes(client, (uint8_t*) &foot, 4) == 4;
if(foot != htonl(ETCP_SINGLE_SOCKET_FOOTER)) ok = 0;
#ifdef ETCP_DEBUG_PRINT
//Serial.print(F("Read ss foot, ok="));
//Serial.println(ok);
#endif
}
// Disconnect
disconnect_in_if_needed();
#ifdef ETCP_DEBUG_PRINT
if (numpackets_in > 0 || numpackets_out > 0) {
Serial.print("INOUT "); Serial.print(numpackets_in); Serial.print(numpackets_out);
Serial.println(ok ? " OK" : " FAIL");
}
#endif
if (!ok) {
stop(client);
#ifdef ETCP_ERROR_PRINT
Serial.print(F("Failure, disconnecting."));
#endif
}
// Return PJON_ACK if successfully sent or received a packet
uint16_t result = ok ? PJON_ACK : PJON_FAIL;
return contents == NULL ? (numpackets_in > 0 ? result : PJON_FAIL) : result;
}
return PJON_FAIL;
};
#endif
/* Read until a specific 4 byte value is found.
This will resync if stream position is lost. */
bool read_until_header(TCPHelperClient &client, uint32_t header) {
header = htonl(header); // Network byte order
uint32_t head = 0;
int8_t bytes_read = 0;
bytes_read = (uint8_t)read_bytes(client, (uint8_t*) &head, 4);
if(bytes_read != 4 || head != header) {
// Did not get header. Lost position in stream?
do { /* Try to resync if we lost position in the stream
(throw avay all until ETCP_HEADER found) */
head = head >> 8;
// Make space for 8 bits to be read into the most significant byte
bytes_read = (uint8_t)read_bytes(client, &((uint8_t*) &head)[3], 1);
if(bytes_read != 1) break;
} while(head != header);
}
return head == header;
};
public:
EthernetLink() {
init();
};