forked from asampat3090/arctic-captions
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathevaluate_coco.py
84 lines (76 loc) · 3.3 KB
/
evaluate_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""
Example execution script. The dataset parameter can
be modified to coco/flickr30k/flickr8k
"""
experimentPrefix = '.exp1'
import argparse
from capgen import train
parser = argparse.ArgumentParser()
parser.add_argument("--attn_type", default="deterministic",
help="type of attention mechanism")
parser.add_argument("changes", nargs="*",
help="Changes to default values", default="")
def main(params):
# see documentation in capgen.py for more details on hyperparams
_, validerr, _ = train(saveto=params["model"],
attn_type=params["attn-type"],
reload_=params["reload"],
dim_word=params["dim-word"],
ctx_dim=params["ctx-dim"],
dim=params["dim"],
n_layers_att=params["n-layers-att"],
n_layers_out=params["n-layers-out"],
n_layers_lstm=params["n-layers-lstm"],
n_layers_init=params["n-layers-init"],
n_words=params["n-words"],
lstm_encoder=params["lstm-encoder"],
decay_c=params["decay-c"],
alpha_c=params["alpha-c"],
prev2out=params["prev2out"],
ctx2out=params["ctx2out"],
lrate=params["learning-rate"],
optimizer=params["optimizer"],
selector=params["selector"],
patience=10,
maxlen=100,
batch_size=64,
valid_batch_size=64,
validFreq=2000,
dispFreq=1,
saveFreq=1000,
sampleFreq=250,
dataset="coco",
use_dropout=params["use-dropout"],
use_dropout_lstm=params["use-dropout-lstm"],
save_per_epoch=params["save-per-epoch"])
print "Final cost: {:.2f}".format(validerr.mean())
if __name__ == "__main__":
# These defaults should more or less reproduce the soft
# alignment model for the MS COCO dataset
defaults = {"model": "coco_deterministic_model" + experimentPrefix + ".npz",
"attn-type": "deterministic",
"dim-word": 512,
"ctx-dim": 512,
"dim": 1800,
"n-layers-att": 2,
"n-layers-out": 1,
"n-layers-lstm": 1,
"n-layers-init": 2,
"n-words": 10000,
"lstm-encoder": False,
"decay-c": 0.,
"alpha-c": 1.,
"prev2out": True,
"ctx2out": True,
"learning-rate": 0.01,
"optimizer": "adam",
"selector": True,
"use-dropout": True,
"use-dropout-lstm": False,
"save-per-epoch": False,
"reload": False}
# get updates from command line
args = parser.parse_args()
for change in args.changes:
defaults.update(eval("dict({})".format(change)))
main(defaults)