Skip to content

Latest commit

 

History

History
73 lines (61 loc) · 2.59 KB

File metadata and controls

73 lines (61 loc) · 2.59 KB

AI Video Analytics

A sample application to perform semantic search and face identification with embedding search on uploaded video.

Example

Alt Text

Validated hardware

  • CPU: Intel® Core™ Ultra 7 processors
  • RAM: 16GB
  • DISK: 128GB

Prerequisite

1. Install operating system

Install the latest Ubuntu* 22.04 LTS Desktop. Refer to Ubuntu Desktop installation tutorial if needed.

Application ports

Please ensure that you have these ports available before running the applications.

Apps Port
Server 5980

Quick Start

1. Model Preparation

Download face detection and face regression models

sudo apt-get update
sudo apt-get install -y wget
mkdir -p ./data/model/facial_recognition
# Download face detection model
wget -O ./data/model/facial_recognition/face-detection-retail-0004.xml https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/face-detection-retail-0004/FP32/face-detection-retail-0004.xml
wget -O ./data/model/facial_recognition/face-detection-retail-0004.bin https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/face-detection-retail-0004/FP32/face-detection-retail-0004.bin
# Download face regression model
wget -O ./data/model/facial_recognition/landmarks-regression-retail-0009.xml https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/landmarks-regression-retail-0009/FP32/landmarks-regression-retail-0009.xml
wget -O ./data/model/facial_recognition/landmarks-regression-retail-0009.bin https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/landmarks-regression-retail-0009/FP32/landmarks-regression-retail-0009.bin

2. Setup environment

Setup the application dependencies

sudo apt-get update
sudo apt-get install -y python3-venv
python3 -m venv .venv
source .venv/bin/activate
python3 -m pip install -U pip
python3 -m pip install -r requirements.txt

3. Run the application

Run the following command to start the app

source .venv/bin/activate
python3 app.py

4. Access the App

Navigate to http://localhost:5980

Docker Setup

Prerequisite

Docker and docker compose should be setup before running the commands below. Refer to here to setup docker.

1. Build docker container

docker compose build

2. Start docker container

docker compose up -d

3. Access the App

Navigate to http://localhost:5980