-
-
Notifications
You must be signed in to change notification settings - Fork 3.2k
/
Copy pathlinearregression.py
216 lines (176 loc) · 7 KB
/
linearregression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# -*- coding: utf-8 -*-
"""linearregression.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1SFWk7Ap06ZkvP2HmLhXLiyyqo-ei35M1
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from datetime import datetime
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
print(tf.__version__)
# Download the daset with keras.utils.get_file
dataset_path = keras.utils.get_file("housing.data", "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data")
column_names = ['CRIM','ZN','INDUS','CHAS','NOX',
'RM', 'AGE', 'DIS','RAD','TAX','PTRATION', 'B', 'LSTAT', 'MEDV']
raw_dataset = pd.read_csv(dataset_path, names=column_names,
na_values = "?", comment='\t',
sep=" ", skipinitialspace=True)
# Create a dataset instant
dataset = raw_dataset.copy()
# This function returns last n rows from the object
# based on position.
dataset.tail(n=10)
# Split data into train/test
# p = training data portion
p=0.8
trainDataset = dataset.sample(frac=p,random_state=0)
testDataset = dataset.drop(trainDataset.index)
# Visual representation of training data
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
# With .pop() command, the associated columns are extracted.
x = trainDataset['RM']
y = trainDataset['MEDV']
ax.scatter(x, y, edgecolors=(0, 0, 0))
ax.set_xlabel('RM')
ax.set_ylabel('MEDV')
plt.show()
# Pop command return item and drop it from frame.
# After using trainDataset.pop('RM'), the 'RM' column
# does not exist in the trainDataset frame anymore!
trainInput = trainDataset['RM']
trainTarget = trainDataset['MEDV']
testInput = testDataset['RM']
testTarget = testDataset['MEDV']
# We don't specify anything for activation -> no activation is applied (ie. "linear" activation: a(x) = x)
# Check: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
def linear_model():
model = keras.Sequential([
layers.Dense(1, use_bias=True, input_shape=(1,), name='layer')
])
# Using adam optimizer
optimizer = tf.keras.optimizers.Adam(
learning_rate=0.01, beta_1=0.9, beta_2=0.99, epsilon=1e-05, amsgrad=False,
name='Adam')
# Check: https://www.tensorflow.org/api_docs/python/tf/keras/Model
# loss: String (name of objective function), objective function or tf.keras.losses.Loss instance. See tf.keras.losses.
# optimizer: String (name of optimizer) or optimizer instance. See tf.keras.optimizers.
# metrics: List of metrics to be evaluated by the model during training and testing
model.compile(loss='mse', optimizer=optimizer, metrics=['mae','mse'])
return model
# Create model instant
model = linear_model()
# Print the model summary
model.summary()
# params
n_epochs = 4000
batch_size = 256
n_idle_epochs = 100
n_epochs_log = 200
n_samples_save = n_epochs_log * trainInput.shape[0]
print('Checkpoint is saved for each {} samples'.format(n_samples_save))
# A mechanism that stops training if the validation loss is not improving for more than n_idle_epochs.
#See https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping for details.
earlyStopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=n_idle_epochs, min_delta=0.001)
# Creating a custom callback to print the log after a certain number of epochs
# Check: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks
predictions_list = []
class NEPOCHLogger(tf.keras.callbacks.Callback):
def __init__(self,per_epoch=100):
'''
display: Number of batches to wait before outputting loss
'''
self.seen = 0
self.per_epoch = per_epoch
def on_epoch_end(self, epoch, logs=None):
if epoch % self.per_epoch == 0:
print('Epoch {}, loss {:.2f}, val_loss {:.2f}, mae {:.2f}, val_mae {:.2f}, mse {:.2f}, val_mse {:.2f}'\
.format(epoch, logs['loss'], logs['val_loss'],logs['mae'], logs['val_mae'],logs['mse'], logs['val_mse']))
# Call the object
log_display = NEPOCHLogger(per_epoch=n_epochs_log)
# Include the epoch in the file name (uses `str.format`)
import os
checkpoint_path = "training/cp-{epoch:05d}.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
# Create a callback that saves the model's weights every 5 epochs
checkpointCallback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_path,
verbose=1,
save_weights_only=True,
save_freq=n_samples_save)
# Save the weights using the `checkpoint_path` format
model.save_weights(checkpoint_path.format(epoch=0))
# Define the Keras TensorBoard callback.
logdir="logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)
history = model.fit(
trainInput, trainTarget, batch_size=batch_size,
epochs=n_epochs, validation_split = 0.1, verbose=0, callbacks=[earlyStopping,log_display,tensorboard_callback,checkpointCallback])
# The fit model returns the history object for each Keras model
# Let's explore what is inside history
print('keys:', history.history.keys())
# Returning the desired values for plotting and turn to numpy array
mae = np.asarray(history.history['mae'])
val_mae = np.asarray(history.history['val_mae'])
# Creating the data frame
num_values = (len(mae))
values = np.zeros((num_values,2), dtype=float)
values[:,0] = mae
values[:,1] = val_mae
# Using pandas to frame the data
steps = pd.RangeIndex(start=0,stop=num_values)
data = pd.DataFrame(values, steps, columns=["training-mae", "val-mae"])
# Plotting
sns.set(style="whitegrid")
sns.lineplot(data=data, palette="tab10", linewidth=2.5)
predictions = model.predict(testInput).flatten()
a = plt.axes(aspect='equal')
plt.scatter(predictions, testTarget, edgecolors=(0, 0, 0))
plt.xlabel('True Values')
plt.ylabel('Predictions')
lims = [0, 50]
plt.xlim(lims)
plt.ylim(lims)
_ = plt.plot(lims, lims)
# Get the saved checkpoint files
checkpoints = []
for f_name in os.listdir(checkpoint_dir):
if f_name.startswith('cp-'):
file_with_no_ext = os.path.splitext(f_name)[0]
checkpoints.append(file_with_no_ext)
# Return unique list elements
checkpoints = list(set(checkpoints))
print('checkpoints:',checkpoints)
# Load all model checkpoints and evaluate for each
count = 0
model_improvement_progress = False
if model_improvement_progress:
for checkpoint in checkpoints:
count += 1
# Call model instant
model = linear_model()
# Restore the weights
path = os.path.join('training',checkpoint)
model.load_weights(path)
# Access to layer weights
layer = model.get_layer('layer')
w1,w0 = layer.get_weights()
w1 = float(w1[0])
w0 = float(w0[0])
# Draw the scatter plot of data
fig, ax = plt.subplots()
x = testInput
y = testTarget
ax.scatter(x, y, edgecolors=(0, 0, 0))
ax.set_xlabel('RM')
ax.set_ylabel('MEDV')
# Plot the line
y_hat = w1*x + w0
plt.plot(x, y_hat, '-r')