-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathff_sable.py
619 lines (517 loc) · 24.1 KB
/
ff_sable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# Copyright 2022 InstaDeep Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import time
from functools import partial
from typing import Any, Callable, Dict, Tuple
import chex
import flax
import hydra
import jax
import jax.numpy as jnp
import optax
from colorama import Fore, Style
from flax.core.frozen_dict import FrozenDict as Params
from jax import tree
from jumanji.types import TimeStep
from omegaconf import DictConfig, OmegaConf
from rich.pretty import pprint
from mava.evaluator import ActorState, EvalActFn, get_eval_fn, get_num_eval_envs
from mava.networks import SableNetwork
from mava.networks.utils.sable import get_init_hidden_state
from mava.systems.ppo.types import PPOTransition as Transition
from mava.systems.sable.types import (
ActorApply,
LearnerApply,
)
from mava.systems.sable.types import FFLearnerState as LearnerState
from mava.types import Action, ExperimentOutput, LearnerFn, MarlEnv, Metrics
from mava.utils import make_env as environments
from mava.utils.checkpointing import Checkpointer
from mava.utils.config import check_total_timesteps
from mava.utils.jax_utils import merge_leading_dims, unreplicate_batch_dim, unreplicate_n_dims
from mava.utils.logger import LogEvent, MavaLogger
from mava.utils.network_utils import get_action_head
from mava.utils.training import make_learning_rate
from mava.wrappers.episode_metrics import get_final_step_metrics
def get_learner_fn(
env: MarlEnv,
apply_fns: Tuple[ActorApply, LearnerApply],
update_fn: optax.TransformUpdateFn,
config: DictConfig,
) -> LearnerFn[LearnerState]:
"""Get the learner function."""
# Get apply functions for executing and training the network.
sable_action_select_fn, sable_apply_fn = apply_fns
def _update_step(learner_state: LearnerState, _: Any) -> Tuple[LearnerState, Tuple]:
"""A single update of the network.
This function steps the environment and records the trajectory batch for
training. It then calculates advantages and targets based on the recorded
trajectory and updates the actor and critic networks based on the calculated
losses.
Args:
----
learner_state (NamedTuple):
- params (FrozenDict): The current model parameters.
- opt_states (OptState): The current optimizer states.
- key (PRNGKey): The random number generator state.
- env_state (State): The environment state.
- last_timestep (TimeStep): The last timestep in the current trajectory.
_ (Any): The current metrics info.
"""
def _env_step(
learner_state: LearnerState, _: int
) -> Tuple[LearnerState, Tuple[Transition, Metrics]]:
"""Step the environment."""
params, opt_states, key, env_state, last_timestep = learner_state
# Select action
key, policy_key = jax.random.split(key)
# Apply the actor network to get the action, log_prob, value and updated hstates.
last_obs = last_timestep.observation
action, log_prob, value, _ = sable_action_select_fn( # type: ignore
params,
observation=last_obs,
key=policy_key,
)
# Step environment
env_state, timestep = jax.vmap(env.step, in_axes=(0, 0))(env_state, action)
done = timestep.last().repeat(env.num_agents).reshape(config.arch.num_envs, -1)
transition = Transition(
done,
action,
value,
timestep.reward,
log_prob,
last_timestep.observation,
)
learner_state = LearnerState(params, opt_states, key, env_state, timestep)
return learner_state, (transition, timestep.extras["episode_metrics"])
# Step environment for rollout length
learner_state, (traj_batch, episode_metrics) = jax.lax.scan(
_env_step, learner_state, length=config.system.rollout_length
)
# Calculate advantage
params, opt_states, key, env_state, last_timestep = learner_state
key, last_val_key = jax.random.split(key)
_, _, last_val, _ = sable_action_select_fn( # type: ignore
params,
observation=last_timestep.observation,
key=last_val_key,
)
def _calculate_gae(
traj_batch: Transition,
current_val: chex.Array,
) -> Tuple[chex.Array, chex.Array]:
"""Calculate the GAE."""
def _get_advantages(
carry: Tuple[chex.Array, chex.Array], transition: Transition
) -> Tuple[Tuple[chex.Array, chex.Array], chex.Array]:
"""Calculate the GAE for a single transition."""
gae, next_value = carry
done, value, reward = (
transition.done,
transition.value,
transition.reward,
)
gamma = config.system.gamma
delta = reward + gamma * next_value * (1 - done) - value
gae = delta + gamma * config.system.gae_lambda * (1 - done) * gae
return (gae, value), gae
_, advantages = jax.lax.scan(
_get_advantages,
(jnp.zeros_like(current_val), current_val),
traj_batch,
reverse=True,
unroll=16,
)
return advantages, advantages + traj_batch.value
advantages, targets = _calculate_gae(traj_batch, last_val)
def _update_epoch(update_state: Tuple, _: Any) -> Tuple:
"""Update the network for a single epoch."""
def _update_minibatch(train_state: Tuple, batch_info: Tuple) -> Tuple:
"""Update the network for a single minibatch."""
params, opt_state, key = train_state
traj_batch, advantages, targets = batch_info
def _loss_fn(
params: Params,
traj_batch: Transition,
gae: chex.Array,
value_targets: chex.Array,
rng_key: chex.PRNGKey,
) -> Tuple:
"""Calculate Sable loss."""
# Rerun network
value, log_prob, entropy = sable_apply_fn( # type: ignore
params,
observation=traj_batch.obs,
action=traj_batch.action,
dones=traj_batch.done,
rng_key=rng_key,
)
# Calculate actor loss
ratio = jnp.exp(log_prob - traj_batch.log_prob)
# Nomalise advantage at minibatch level
gae = (gae - gae.mean()) / (gae.std() + 1e-8)
actor_loss1 = ratio * gae
actor_loss2 = (
jnp.clip(
ratio,
1.0 - config.system.clip_eps,
1.0 + config.system.clip_eps,
)
* gae
)
actor_loss = -jnp.minimum(actor_loss1, actor_loss2)
actor_loss = actor_loss.mean()
entropy = entropy.mean()
# Clipped MSE loss
value_pred_clipped = traj_batch.value + (value - traj_batch.value).clip(
-config.system.clip_eps, config.system.clip_eps
)
value_losses = jnp.square(value - value_targets)
value_losses_clipped = jnp.square(value_pred_clipped - value_targets)
value_loss = 0.5 * jnp.maximum(value_losses, value_losses_clipped).mean()
total_loss = (
actor_loss
- config.system.ent_coef * entropy
+ config.system.vf_coef * value_loss
)
return total_loss, (actor_loss, entropy, value_loss)
# Calculate loss
key, entropy_key = jax.random.split(key)
grad_fn = jax.value_and_grad(_loss_fn, has_aux=True)
loss_info, grads = grad_fn(params, traj_batch, advantages, targets, entropy_key)
# Compute the parallel mean (pmean) over the batch.
# This pmean could be a regular mean as the batch axis is on the same device.
grads, loss_info = jax.lax.pmean((grads, loss_info), axis_name="batch")
# pmean over devices.
grads, loss_info = jax.lax.pmean((grads, loss_info), axis_name="device")
# Update params and optimiser state
updates, new_opt_state = update_fn(grads, opt_state)
new_params = optax.apply_updates(params, updates)
total_loss, (actor_loss, entropy, value_loss) = loss_info
loss_info = {
"total_loss": total_loss,
"value_loss": value_loss,
"actor_loss": actor_loss,
"entropy": entropy,
}
return (new_params, new_opt_state, key), loss_info
(params, opt_states, traj_batch, advantages, targets, key) = update_state
# Shuffle minibatches
key, batch_shuffle_key, agent_shuffle_key, entropy_key = jax.random.split(key, 4)
# Shuffle batch
batch_size = config.system.rollout_length * config.arch.num_envs
permutation = jax.random.permutation(batch_shuffle_key, batch_size)
batch = (traj_batch, advantages, targets)
batch = tree.map(lambda x: merge_leading_dims(x, 2), batch)
shuffled_batch = tree.map(lambda x: jnp.take(x, permutation, axis=0), batch)
# Shuffle agents
agent_perm = jax.random.permutation(agent_shuffle_key, config.system.num_agents)
shuffled_batch = tree.map(lambda x: jnp.take(x, agent_perm, axis=1), shuffled_batch)
# Split into minibatches
minibatches = tree.map(
lambda x: jnp.reshape(x, (config.system.num_minibatches, -1, *x.shape[1:])),
shuffled_batch,
)
# Update minibatches
(params, opt_states, entropy_key), loss_info = jax.lax.scan(
_update_minibatch,
(params, opt_states, entropy_key),
minibatches,
)
update_state = (params, opt_states, traj_batch, advantages, targets, key)
return update_state, loss_info
update_state = (params, opt_states, traj_batch, advantages, targets, key)
# Update epochs
update_state, loss_info = jax.lax.scan(
_update_epoch, update_state, None, config.system.ppo_epochs
)
params, opt_states, traj_batch, advantages, targets, key = update_state
learner_state = LearnerState(
params,
opt_states,
key,
env_state,
last_timestep,
)
return learner_state, (episode_metrics, loss_info)
def learner_fn(learner_state: LearnerState) -> ExperimentOutput[LearnerState]:
"""Learner function.
This function represents the learner, it updates the network parameters
by iteratively applying the `_update_step` function for a fixed number of
updates. The `_update_step` function is vectorized over a batch of inputs.
Args:
----
learner_state (NamedTuple):
- params (FrozenDict): The initial model parameters.
- opt_state (OptState): The initial optimizer state.
- key (chex.PRNGKey): The random number generator state.
- env_state (LogEnvState): The environment state.
- timesteps (TimeStep): The initial timestep in the initial trajectory.
"""
batched_update_step = jax.vmap(_update_step, in_axes=(0, None), axis_name="batch")
learner_state, (episode_info, loss_info) = jax.lax.scan(
batched_update_step, learner_state, None, config.system.num_updates_per_eval
)
return ExperimentOutput(
learner_state=learner_state,
episode_metrics=episode_info,
train_metrics=loss_info,
)
return learner_fn
def learner_setup(
env: MarlEnv, keys: chex.Array, config: DictConfig
) -> Tuple[LearnerFn[LearnerState], Callable, LearnerState]:
"""Initialise learner_fn, network, optimiser, environment and states."""
# Get available TPU cores.
n_devices = len(jax.devices())
# PRNG keys.
key, net_key = keys
# Get number of agents and actions.
action_dim = env.action_dim
n_agents = env.num_agents
config.system.num_agents = n_agents
# Setting the chunksize - many agent problems require chunking agents
# Create a dummy decay factor for FF Sable
config.network.memory_config.decay_scaling_factor = 1.0
if config.network.memory_config.agents_chunk_size:
config.network.memory_config.chunk_size = config.network.memory_config.agents_chunk_size
err = "Number of agents should be divisible by chunk size"
assert n_agents % config.network.memory_config.chunk_size == 0, err
else:
config.network.memory_config.chunk_size = n_agents
# Set positional encoding to False, since ff-sable does not use temporal dependencies.
config.network.memory_config.timestep_positional_encoding = False
_, action_space_type = get_action_head(env.action_spec)
# Define network.
sable_network = SableNetwork(
n_agents=n_agents,
n_agents_per_chunk=config.network.memory_config.chunk_size,
action_dim=action_dim,
net_config=config.network.net_config,
memory_config=config.network.memory_config,
action_space_type=action_space_type,
)
# Define optimiser.
lr = make_learning_rate(config.system.actor_lr, config)
optim = optax.chain(
optax.clip_by_global_norm(config.system.max_grad_norm),
optax.adam(lr, eps=1e-5),
)
# Get mock inputs to initialise network.
init_obs = env.observation_spec.generate_value()
init_obs = tree.map(lambda x: x[jnp.newaxis, ...], init_obs) # Add batch dim
init_hs = get_init_hidden_state(config.network.net_config, config.arch.num_envs)
init_hs = tree.map(lambda x: x[0, jnp.newaxis], init_hs)
# Initialise params and optimiser state.
params = sable_network.init(
net_key,
init_obs,
init_hs,
net_key,
method="get_actions",
)
opt_state = optim.init(params)
# Create fake hstates
minibatch_size = (
config.arch.num_envs * config.system.rollout_length // config.system.num_minibatches
)
dummy_actor_hs = get_init_hidden_state(config.network.net_config, config.arch.num_envs)
dummy_trainer_hs = get_init_hidden_state(config.network.net_config, minibatch_size)
# Pack apply and update functions.
# Using dummy hstates, since we are not updating the hstates during training.
apply_fns = (
partial(
sable_network.apply, method="get_actions", hstates=dummy_actor_hs
), # Execution function
partial(sable_network.apply, hstates=dummy_trainer_hs), # Training function
)
eval_apply_fn = partial(sable_network.apply, method="get_actions")
# Get batched iterated update and replicate it to pmap it over cores.
learn = get_learner_fn(env, apply_fns, optim.update, config)
learn = jax.pmap(learn, axis_name="device")
# Initialise environment states and timesteps: across devices and batches.
key, *env_keys = jax.random.split(
key, n_devices * config.system.update_batch_size * config.arch.num_envs + 1
)
env_states, timesteps = jax.vmap(env.reset, in_axes=(0))(
jnp.stack(env_keys),
)
reshape_states = lambda x: x.reshape(
(n_devices, config.system.update_batch_size, config.arch.num_envs) + x.shape[1:]
)
# (devices, update batch size, num_envs, ...)
env_states = tree.map(reshape_states, env_states)
timesteps = tree.map(reshape_states, timesteps)
# Load model from checkpoint if specified.
if config.logger.checkpointing.load_model:
loaded_checkpoint = Checkpointer(
model_name=config.logger.system_name,
**config.logger.checkpointing.load_args, # Other checkpoint args
)
# Restore the learner state from the checkpoint
restored_params, _ = loaded_checkpoint.restore_params(input_params=params)
# Update the params
params = restored_params
# Define params to be replicated across devices and batches.
key, step_keys = jax.random.split(key)
replicate_learner = (params, opt_state, step_keys)
# Duplicate learner for update_batch_size.
broadcast = lambda x: jnp.broadcast_to(x, (config.system.update_batch_size, *x.shape))
replicate_learner = tree.map(broadcast, replicate_learner)
# Duplicate learner across devices.
replicate_learner = flax.jax_utils.replicate(replicate_learner, devices=jax.devices())
# Initialise learner state.
params, opt_state, step_keys = replicate_learner
init_learner_state = LearnerState(
params=params,
opt_states=opt_state,
key=step_keys,
env_state=env_states,
timestep=timesteps,
)
return learn, eval_apply_fn, init_learner_state
def run_experiment(_config: DictConfig) -> float:
"""Runs experiment."""
_config.logger.system_name = "ff_sable"
config = copy.deepcopy(_config)
n_devices = len(jax.devices())
# Create the enviroments for train and eval.
env, eval_env = environments.make(config)
# PRNG keys.
key, key_e, net_key = jax.random.split(jax.random.PRNGKey(config.system.seed), num=3)
# Setup learner.
learn, sable_execution_fn, learner_state = learner_setup(env, (key, net_key), config)
# Setup evaluator.
def make_ff_sable_act_fn(actor_apply_fn: ActorApply) -> EvalActFn:
def eval_act_fn(
params: Params, timestep: TimeStep, key: chex.PRNGKey, actor_state: ActorState
) -> Tuple[Action, Dict]:
output_action, _, _, _ = actor_apply_fn( # type: ignore
params,
observation=timestep.observation,
key=key,
)
return output_action, {}
return eval_act_fn
# One key per device for evaluation.
eval_keys = jax.random.split(key_e, n_devices)
# Define Apply fn for evaluation.
# Create an hstate with only zeros. This will never be updated over timesteps,
# but will be updated between agents in a given timestep since ff_sable has no
# memory over time.
eval_batch_size = get_num_eval_envs(config, absolute_metric=False)
eval_hs = get_init_hidden_state(config.network.net_config, eval_batch_size)
sable_execution_fn = partial(sable_execution_fn, hstates=eval_hs)
eval_act_fn = make_ff_sable_act_fn(sable_execution_fn)
# Create evaluator
evaluator = get_eval_fn(eval_env, eval_act_fn, config, absolute_metric=False)
# Calculate total timesteps.
config = check_total_timesteps(config)
assert (
config.system.num_updates > config.arch.num_evaluation
), "Number of updates per evaluation must be less than total number of updates."
# Calculate number of updates per evaluation.
config.system.num_updates_per_eval = config.system.num_updates // config.arch.num_evaluation
steps_per_rollout = (
n_devices
* config.system.num_updates_per_eval
* config.system.rollout_length
* config.system.update_batch_size
* config.arch.num_envs
)
# Logger setup
logger = MavaLogger(config)
cfg: Dict = OmegaConf.to_container(config, resolve=True)
cfg["arch"]["devices"] = jax.devices()
pprint(cfg)
# Set up checkpointer
save_checkpoint = config.logger.checkpointing.save_model
if save_checkpoint:
checkpointer = Checkpointer(
metadata=config, # Save all config as metadata in the checkpoint
model_name=config.logger.system_name,
**config.logger.checkpointing.save_args, # Checkpoint args
)
# Run experiment for a total number of evaluations.
max_episode_return = -jnp.inf
best_params = None
for eval_step in range(config.arch.num_evaluation):
# Train.
start_time = time.time()
learner_output = learn(learner_state)
jax.block_until_ready(learner_output)
# Log the results of the training.
elapsed_time = time.time() - start_time
t = int(steps_per_rollout * (eval_step + 1))
episode_metrics, ep_completed = get_final_step_metrics(learner_output.episode_metrics)
episode_metrics["steps_per_second"] = steps_per_rollout / elapsed_time
# Separately log timesteps, actoring metrics and training metrics.
logger.log({"timestep": t}, t, eval_step, LogEvent.MISC)
if ep_completed: # only log episode metrics if an episode was completed in the rollout.
logger.log(episode_metrics, t, eval_step, LogEvent.ACT)
logger.log(learner_output.train_metrics, t, eval_step, LogEvent.TRAIN)
# Prepare for evaluation.
trained_params = unreplicate_batch_dim(learner_state.params)
key_e, *eval_keys = jax.random.split(key_e, n_devices + 1)
eval_keys = jnp.stack(eval_keys)
eval_keys = eval_keys.reshape(n_devices, -1)
# Evaluate.
eval_metrics = evaluator(trained_params, eval_keys, {})
logger.log(eval_metrics, t, eval_step, LogEvent.EVAL)
episode_return = jnp.mean(eval_metrics["episode_return"])
if save_checkpoint:
# Save checkpoint of learner state
checkpointer.save(
timestep=steps_per_rollout * (eval_step + 1),
unreplicated_learner_state=unreplicate_n_dims(learner_output.learner_state),
episode_return=episode_return,
)
if config.arch.absolute_metric and max_episode_return <= episode_return:
best_params = copy.deepcopy(trained_params)
max_episode_return = episode_return
# Update runner state to continue training.
learner_state = learner_output.learner_state
# Record the performance for the final evaluation run.
eval_performance = float(jnp.mean(eval_metrics[config.env.eval_metric]))
# Measure absolute metric.
if config.arch.absolute_metric:
eval_batch_size = get_num_eval_envs(config, absolute_metric=True)
abs_hs = get_init_hidden_state(config.network.net_config, eval_batch_size)
sable_execution_fn = partial(sable_execution_fn, hstates=abs_hs)
eval_act_fn = make_ff_sable_act_fn(sable_execution_fn)
abs_metric_evaluator = get_eval_fn(eval_env, eval_act_fn, config, absolute_metric=True)
eval_keys = jax.random.split(key, n_devices)
eval_metrics = abs_metric_evaluator(best_params, eval_keys, {})
t = int(steps_per_rollout * (eval_step + 1))
logger.log(eval_metrics, t, eval_step, LogEvent.ABSOLUTE)
# Stop the logger.
logger.stop()
return eval_performance
@hydra.main(
config_path="../../../configs/default",
config_name="ff_sable.yaml",
version_base="1.2",
)
def hydra_entry_point(cfg: DictConfig) -> float:
"""Experiment entry point."""
# Allow dynamic attributes.
OmegaConf.set_struct(cfg, False)
# Run experiment.
eval_performance = run_experiment(cfg)
print(f"{Fore.CYAN}{Style.BRIGHT}FF Sable experiment completed{Style.RESET_ALL}")
return eval_performance
if __name__ == "__main__":
hydra_entry_point()