forked from Datura-ai/cortex.t
-
Notifications
You must be signed in to change notification settings - Fork 0
/
organic.py
211 lines (181 loc) · 7.04 KB
/
organic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import bittensor as bt
import pydantic
from enum import Enum
from typing import AsyncIterator, Dict, List, Literal, Optional
from starlette.responses import StreamingResponse
import asyncio
import random
class StreamPrompting(bt.StreamingSynapse):
messages: List[Dict[str, str]] = pydantic.Field(
...,
title="Messages",
description="A list of messages in the StreamPrompting scenario, "
"each containing a role and content. Immutable.",
allow_mutation=False,
)
required_hash_fields: List[str] = pydantic.Field(
["messages"],
title="Required Hash Fields",
description="A list of required fields for the hash.",
allow_mutation=False,
)
seed: int = pydantic.Field(
default="1234",
title="Seed",
description="Seed for text generation. This attribute is immutable and cannot be updated.",
)
temperature: float = pydantic.Field(
default=0.0001,
title="Temperature",
description="Temperature for text generation. "
"This attribute is immutable and cannot be updated.",
)
max_tokens: int = pydantic.Field(
default=2048,
title="Max Tokens",
description="Max tokens for text generation. "
"This attribute is immutable and cannot be updated.",
)
top_p: float = pydantic.Field(
default=0.001,
title="Top_p",
description="Top_p for text generation. The sampler will pick one of "
"the top p percent tokens in the logit distirbution. "
"This attribute is immutable and cannot be updated.",
)
top_k: int = pydantic.Field(
default=1,
title="Top_k",
description="Top_k for text generation. Sampler will pick one of "
"the k most probablistic tokens in the logit distribtion. "
"This attribute is immutable and cannot be updated.",
)
completion: str = pydantic.Field(
None,
title="Completion",
description="Completion status of the current StreamPrompting object. "
"This attribute is mutable and can be updated.",
)
provider: str = pydantic.Field(
default="OpenAI",
title="Provider",
description="The provider to use when calling for your response. "
"Options: OpenAI, Anthropic, Gemini",
)
model: str = pydantic.Field(
default="gpt-3.5-turbo",
title="model",
description="The model to use when calling provider for your response.",
)
uid: int = pydantic.Field(
default=3,
title="uid",
description="The UID to send the streaming synapse to",
)
timeout: int = pydantic.Field(
default=60,
title="timeout",
description="The timeout for the dendrite of the streaming synapse",
)
streaming: bool = pydantic.Field(
default=True,
title="streaming",
description="whether to stream the output",
)
async def process_streaming_response(self, response: StreamingResponse) -> AsyncIterator[str]:
if self.completion is None:
self.completion = ""
async for chunk in response.content.iter_any():
tokens = chunk.decode("utf-8")
for token in tokens:
if token:
self.completion += token
yield tokens
def deserialize(self) -> str:
return self.completion
def extract_response_json(self, response: StreamingResponse) -> dict:
headers = {
k.decode("utf-8"): v.decode("utf-8")
for k, v in response.__dict__["_raw_headers"]
}
def extract_info(prefix: str) -> dict[str, str]:
return {
key.split("_")[-1]: value
for key, value in headers.items()
if key.startswith(prefix)
}
return {
"name": headers.get("name", ""),
"timeout": float(headers.get("timeout", 0)),
"total_size": int(headers.get("total_size", 0)),
"header_size": int(headers.get("header_size", 0)),
"dendrite": extract_info("bt_header_dendrite"),
"axon": extract_info("bt_header_axon"),
"messages": self.messages,
"completion": self.completion,
"provider": self.provider,
"model": self.model,
"seed": self.seed,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"top_k": self.top_k,
"uid": self.uid,
"timeout": self.timeout,
}
async def query_miner(dendrite, axon_to_use, synapse, timeout, streaming):
try:
print(f"calling vali axon {axon_to_use} to miner uid {synapse.uid} for query {synapse.messages}")
responses = dendrite.query(
axons=[axon_to_use],
synapse=synapse,
deserialize=False,
timeout=timeout,
streaming=streaming,
)
return await handle_response(responses)
except Exception as e:
print(f"Exception during query: {traceback.format_exc()}")
return None
async def handle_response(responses):
full_response = ""
try:
for resp in responses:
async for chunk in resp:
if isinstance(chunk, str):
full_response += chunk
print(chunk, end='', flush=True)
else:
print(f"\n\nFinal synapse: {chunk}\n")
except Exception as e:
print(f"Error processing response for uid {e}")
return full_response
async def main():
print("synching metagraph, this takes way too long.........")
subtensor = bt.subtensor( network="finney" )
meta = subtensor.metagraph( netuid=18 )
print("metagraph synched!")
# This needs to be your validator wallet that is running your subnet 18 validator
wallet = bt.wallet( name="validator", hotkey="default" )
dendrite = bt.dendrite( wallet=wallet )
vali_uid = meta.hotkeys.index( wallet.hotkey.ss58_address)
axon_to_use = meta.axons[vali_uid]
# This is the question to send your validator to send your miner.
prompt = "Give me a long story about a cat"
messages = [{'role': 'user', 'content': prompt}]
# You can edit this to pick a specific miner uid, just change miner_uid to the uid that you desire.
# Currently, it just picks a random miner form the top 100 uids. Or it can be hardcoded to a specific uid.
miner_uid = 202
synapse = StreamPrompting(
messages = messages,
# get available providers and models from : https://github.com/corcel-api/cortex.t/blob/2807988d66523a432f6159d46262500b060f13dc/cortext/protocol.py#L238
provider = "OpenAI",
model = "gpt-3.5-turbo",
uid = miner_uid,
)
timeout = 60
streaming = True
print("querying miner")
response = await query_miner(dendrite, axon_to_use, synapse, timeout, streaming)
if __name__ == "__main__":
asyncio.run(main())