forked from magicleap/Atlas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
64 lines (47 loc) · 2.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright 2020 Magic Leap, Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Originating Author: Zak Murez (zak.murez.com)
import os
import pytorch_lightning as pl
import torch
from atlas.config import get_parser, get_cfg
from atlas.logger import AtlasLogger
from atlas.model import VoxelNet
# FIXME: should not be necessary, but something is remaining
# in memory between train and val
class CudaClearCacheCallback(pl.Callback):
def on_train_start(self, trainer, pl_module):
torch.cuda.empty_cache()
def on_validation_start(self, trainer, pl_module):
torch.cuda.empty_cache()
def on_validation_end(self, trainer, pl_module):
torch.cuda.empty_cache()
if __name__ == "__main__":
args = get_parser().parse_args()
cfg = get_cfg(args)
model = VoxelNet(cfg.convert_to_dict())
save_path = os.path.join(cfg.LOG_DIR, cfg.TRAINER.NAME, cfg.TRAINER.VERSION)
logger = AtlasLogger(cfg.LOG_DIR, cfg.TRAINER.NAME, cfg.TRAINER.VERSION)
checkpoint_callback = pl.callbacks.ModelCheckpoint(
filepath=os.path.join(save_path, '{epoch:03d}'),
save_top_k=-1,
period=cfg.TRAINER.CHECKPOINT_PERIOD)
trainer = pl.Trainer(
logger=logger,
checkpoint_callback=checkpoint_callback,
check_val_every_n_epoch=cfg.TRAINER.CHECKPOINT_PERIOD,
callbacks=[CudaClearCacheCallback()],
distributed_backend='ddp',
benchmark=True,
gpus=cfg.TRAINER.NUM_GPUS,
precision=cfg.TRAINER.PRECISION,
amp_level='O1')
trainer.fit(model)