-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
488 lines (375 loc) · 23.3 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import os
import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import glob
def remove_highly_correlated_features(X, features, corr_threshold=0.75):
corr_matrix = X[features].corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
to_drop = [column for column in upper.columns if any(upper[column] >= corr_threshold)]
print(f'# features before: {len(features)}', end=' | ')
#X.drop(to_drop, axis=1, inplace=True)
print(f'after: {len(features) - len(to_drop)}', )
print('dropped:', to_drop)
return [x for x in features if x not in to_drop]
def plot_glucose_distribution(results_dir, bg_data):
palette = {"Moderate hyperglycemia": "orange",
"Mild hyperglycemia": "moccasin",
"In range": "g",
"Mild hypoglycemia": "lightcoral",
"Moderate hypoglycemia": "red"
}
bg_data.loc[(bg_data['CGM value [mmol/L]'] > 13.9) & (
bg_data['CGM value [mmol/L]'] <= 99.0), 'label'] = "Moderate hyperglycemia" # hyper
bg_data.loc[(bg_data['CGM value [mmol/L]'] > 10.0) & (
bg_data['CGM value [mmol/L]'] <= 13.9), 'label'] = "Mild hyperglycemia"
bg_data.loc[
(bg_data['CGM value [mmol/L]'] >= 3.9) & (bg_data['CGM value [mmol/L]'] <= 10), 'label'] = "In range" # normo
bg_data.loc[
(bg_data['CGM value [mmol/L]'] >= 3.0) & (bg_data['CGM value [mmol/L]'] < 3.9), 'label'] = "Mild hypoglycemia"
bg_data.loc[(bg_data['CGM value [mmol/L]'] >= 0.0) & (
bg_data['CGM value [mmol/L]'] < 3.0), 'label'] = "Moderate hypoglycemia"
fig = sns.displot(data=bg_data.drop(columns=['ID']).reset_index(),
binwidth=0.75,
x="CGM value [mmol/L]",
# alpha = 0.6,
# common_norm=False,
hue='label',
palette=palette,
multiple="stack",
stat="density",
element="bars").set(title="Glucose Distribution",
xlabel='Glucose in mmol/L')
fig.savefig(fname=results_dir + '/glucose_distributiion.pdf',
facecolor="white",
bbox_inches='tight',
dpi=300)
plt.show()
plt.close()
def dst_changes(bg_data, ID):
DST_CHANGES = {
'radar-06': [pd.to_datetime('2021-03-28 08:29:00'), 'w2s'],
'radar-08': [pd.to_datetime('2021-03-28 19:57:00'), 'w2s'],
'radar-09': [pd.to_datetime('2021-03-30 11:49:00'), 'w2s'],
'radar-10': [pd.to_datetime('2021-03-28 09:06:00'), 'w2s'],
'radar-28': [pd.to_datetime('2021-11-01 08:09:00'), 's2w'],
'radar-29': [pd.to_datetime('2021-10-30 20:18:00'), 's2w'],
'radar-30': [pd.to_datetime('2021-10-31 02:00:00'), 's2w'],
}
if ID in DST_CHANGES.keys():
# Converting times where DST was not considered by the bg device
# 'Etc/GMT-2' = UTC+2 --> Europe/Zurich with DST (Sommerzeit)
# 'Etc/GMT-1' = UTC+1 --> Europe/Zurich before DST (Winterzeit)
if DST_CHANGES[ID][1] == 'w2s':
dst_change = DST_CHANGES[ID][0]
# Here before DST (Winterzeit)
temp_w = bg_data.loc[bg_data.index <= dst_change].copy()
temp_w.index = temp_w.index - dt.timedelta(hours=1)
temp_w.index = temp_w.index.tz_localize('UTC')
temp_s = bg_data.loc[bg_data.index > dst_change].copy()
temp_s.index = temp_s.index - dt.timedelta(hours=2)
temp_s.index = temp_s.index.tz_localize('UTC')
bg_data = temp_w.append(temp_s)
elif DST_CHANGES[ID][1] == 's2w':
dst_change = DST_CHANGES[ID][0]
# Here before DST (Winterzeit)
# Delete additional 2h because the manual shift causes an overlap
# of observations instead of a jup
temp_w = bg_data.loc[bg_data.index > dst_change + dt.timedelta(hours=2)].copy()
temp_w.index = temp_w.index - dt.timedelta(hours=1)
temp_w.index = temp_w.index.tz_localize('UTC')
temp_s = bg_data.loc[bg_data.index <= dst_change - dt.timedelta(hours=2)].copy()
temp_s.index = temp_s.index - dt.timedelta(hours=2)
temp_s.index = temp_s.index.tz_localize('UTC')
bg_data = temp_w.append(temp_s)
bg_data = bg_data.sort_index()
else:
# Here before DST (Winterzeit)
bg_data.index = bg_data.index - pd.Timedelta(hours=1)
bg_data.index = bg_data.index.tz_localize('UTC')
else:
bg_data.index = bg_data.index.tz_localize('Europe/Zurich').tz_convert('UTC') # .tz_localize(None)
return bg_data
def reader(FEATURE_DIR, BG_DIR, ID, WINDOW_LENGTH=300, WINDOW_STEP=300, HYPO_DISTANCE='120min', HYPO_EXTENSION='365D', DELAY='0min',
EMPATICA=True, GLUCOSE_THRESHOLD = 3.9, CALIBRATION = False):
# read smartwatch data
garmin_file = f'{FEATURE_DIR}/merged_features_{ID}_{WINDOW_LENGTH}_{WINDOW_STEP}.parquet.gzip'
if os.path.exists(garmin_file):
feature_data = pd.read_parquet(glob.glob(garmin_file)[0])
else:
print(f'Problems in loading file: {garmin_file} for {ID}.')
feature_data.index = feature_data.index.tz_localize('UTC')
feature_data = feature_data.sort_index()
feature_data = feature_data.filter(regex='^(ZERO)|(hrv)|(HEART_RATE)', axis=1) # '^(ZERO)|(hrv)|(HEART_RATE)'
# read empatica data
if EMPATICA:
try:
empatica_files = glob.glob(f'{FEATURE_DIR}empatica_features_{ID}_{WINDOW_LENGTH}_{WINDOW_STEP}.parquet.gzip')[0]
empatica_data = pd.read_parquet(empatica_files)
empatica_data = empatica_data.sort_index()
empatica_data = empatica_data.clip(lower=0)
empatica_data = empatica_data.add_prefix("eda_")
average_empatica_missing = []
for day in pd.date_range(start=sorted(empatica_data.index)[0].date(),end=sorted(empatica_data.index)[-1].date()):
temp = empatica_data.loc[(empatica_data.index >= day.tz_localize('UTC')) & (empatica_data.index <= day.tz_localize('UTC') + dt.timedelta(days=1)), ["eda_tonic_mean"]].dropna()
diff_list = pd.Series([pd.to_datetime(day.tz_localize('UTC'))]).append(pd.Series(temp.index))
diff_list = diff_list.append(pd.Series([pd.to_datetime(day.tz_localize('UTC') + dt.timedelta(days=1))]))
average_empatica_missing.append(diff_list.diff().sort_values(ascending=False)[0:5].sum().total_seconds() / (0.24 * 3600))
average_empatica_missing = average_empatica_missing[1:-1]
print(f"{ID.capitalize()} misses in average {np.round(np.sum(average_empatica_missing) / len(average_empatica_missing), 2)}% (days={len(average_empatica_missing)}) Empatica data exclusively the first and last visit.")
del temp, diff_list, average_empatica_missing
feature_data = pd.merge_asof(feature_data,
empatica_data,
left_index=True,
right_index=True,
direction='nearest',
tolerance=pd.Timedelta(seconds=WINDOW_STEP))
except Exception as e:
raise Exception("Error in Empatica loading", e)
feature_data = feature_data.replace([np.inf, -np.inf], np.nan)
keep_columns = ~feature_data.columns.isin(feature_data.filter(regex="(min)|(max)|(mfcc)|(ent)|(fd)|(ene)").columns.to_list())
feature_data = feature_data.loc[:, keep_columns]
# read CGM data
bg_files = glob.glob(BG_DIR + ID + '/*.csv')
bg_data = pd.concat([pd.read_csv(f,
names=['datetime', 'event_type', 'CGM value [mmol/L]'],
skiprows=13,
usecols=[0, 1, 3] if ID == "radar-39" else [1, 2, 7],
encoding='ISO-8859-1' if ID == "radar-37" else 'utf-8',
parse_dates=True,
index_col='datetime') for f in bg_files])
bg_data = bg_data[~bg_data.index.duplicated(keep='first')]
bg_data = bg_data.sort_index()
bg_data = bg_data[bg_data.event_type == 'EGV']
bg_data = bg_data.drop(columns=['event_type'])
bg_data = dst_changes(bg_data, ID)
bg_data['CGM value [mmol/L]'] = bg_data['CGM value [mmol/L]'].replace({'High': np.nan, 'Low': np.nan}).astype(float)
bg_data = bg_data.interpolate(method='time', limit=12)
bg_data.index = bg_data.index - pd.to_timedelta(DELAY)
# create hypo file
temp = bg_data.copy()
temp['hypo'] = (bg_data['CGM value [mmol/L]'] < GLUCOSE_THRESHOLD).astype(int)
temp['diff'] = temp['hypo'].diff()
temp = temp[temp['diff'] != 0]
temp['timedelta'] = temp.index - temp.index.to_series().shift(1)
temp['hypo_begin'] = temp.index.to_series().shift(1)
temp['hypo_enter'] = temp['CGM value [mmol/L]'].shift(1)
temp = temp[temp['diff'] == -1]
temp = temp.loc[temp['timedelta'] >= dt.timedelta(minutes=14.75)]
temp['hypo_end'] = temp.index
temp = temp.reset_index(drop=True)
temp['time_to_prev_hypo'] = temp['hypo_begin'] - temp['hypo_end'].shift(1)
if len(temp) > 1:
temp.loc[temp.index[0], 'time_to_prev_hypo'] = pd.to_timedelta(HYPO_DISTANCE) + pd.to_timedelta('1min')
temp = temp.loc[temp['time_to_prev_hypo'] > pd.to_timedelta(HYPO_DISTANCE)]
temp.loc[temp.index[0], 'time_to_prev_hypo'] = np.nan
bg_data = bg_data.reindex(index=bg_data.index.union(feature_data.index))
bg_data = bg_data.interpolate(method='time', limit=12)
# create combined feature and bg file
data = feature_data.copy()
data['CGM value [mmol/L]'] = bg_data['CGM value [mmol/L]']
data['label'] = 0
#data = data.drop(data.filter(regex=("(min)|(max)|(mfcc)|(ent)|(fd)"), axis=1).columns.to_list()
# + ['hrv_mean_nni', 'hrv_median_nni'], axis=1)
#data = data.dropna()
if CALIBRATION:
# calibration feature (CGM value at 05:00)
tmp_index = pd.date_range(start=bg_data.index[0].floor('D') + pd.Timedelta(hours=5) + pd.to_timedelta(DELAY),
end=bg_data.index[-1].floor('D') + pd.Timedelta(days=1),
freq='1D')
tmp_values = bg_data.reindex(bg_data.index.union(tmp_index), method='nearest',
tolerance=pd.Timedelta(minutes=15))
tmp_values = tmp_values.loc[tmp_index, 'CGM value [mmol/L]'].rename('calibration')
data = pd.merge_asof(data, tmp_values,
left_index=True,
right_index=True,
direction='backward',
tolerance=pd.to_timedelta('24h'),
allow_exact_matches=True)
# Prepare LOHO data
loho_data = pd.DataFrame()
for idx, row in temp.iterrows():
if len(data.loc[(data.index >= row['hypo_begin']) & (data.index <= row['hypo_end'])].dropna()) > 0:
# hypo_end = min(row['hypo_begin'] + pd.to_timedelta('1h'), row['hypo_end'])
data.loc[(data.index >= row['hypo_begin']) & (data.index <= row['hypo_end']), 'label'] = 1
data.loc[(data.index > row['hypo_end']) & (data.index <= row['hypo_end'] + pd.to_timedelta(HYPO_DISTANCE)), 'label'] = -1
loho_data = loho_data.append(row)
data = data[data['label'] != -1]
loho_data = loho_data.reset_index()
if not loho_data.empty:
loho_data['min_allowed_split_begin'] = loho_data['hypo_begin'] - (
loho_data['hypo_begin'] - loho_data['hypo_end'].shift()) / 2
loho_data['max_allowed_split_end'] = loho_data['hypo_end'] + (
loho_data['hypo_begin'].shift(-1) - loho_data['hypo_end']) / 2
loho_data.loc[loho_data.index[0], 'min_allowed_split_begin'] = data.index[0]
loho_data.loc[loho_data.index[-1], 'max_allowed_split_end'] = data.index[-1]
loho_data['split_begin'] = np.maximum(loho_data['min_allowed_split_begin'],
loho_data['hypo_begin'] - pd.to_timedelta(HYPO_EXTENSION))
loho_data['split_end'] = np.minimum(loho_data['max_allowed_split_end'],
loho_data['hypo_end'] + pd.to_timedelta(HYPO_EXTENSION))
COMPUTE_QUEST_FEATURES = False
if COMPUTE_QUEST_FEATURES:
quest_data = pd.read_csv(ROOT + "questionnaire/questionnaire.csv")
quest_data = quest_data.loc[quest_data['pC'] == ID]
data['PA_now'] = 0
data['PA_now_intensity'] = 0
data['PA_12h'] = 0
data['PA_12h_intensity'] = 0
data['PA_24h'] = 0
data['PA_24h_intensity'] = 0
PA_intensity = {"leicht": 1, "mittel": 2, "hoch": 3, "Easy": 1, "Moderate": 2, "High": 3}
quest_data['Datum Abgeschickt'] = quest_data['Datum Abgeschickt'].astype(str)
quest_data['Wann haben Sie die Aktivität begonnen?'] = quest_data[
'Wann haben Sie die Aktivität begonnen?'].astype(str)
quest_data['Wann haben Sie die Akitvität beendet?'] = quest_data[
'Wann haben Sie die Akitvität beendet?'].astype(str)
for idx, row in quest_data.loc[(quest_data['Haben Sie sich gestern körperlich betätigt?'] == "Yes") |
(quest_data['Haben Sie sich gestern körperlich betätigt?'] == "Ja")].iterrows():
if not row['Datum Abgeschickt'] == "nan":
intensity = row['Wie schätzen Sie die Intensität Ihrer Aktivität ein?']
activity_start = pd.to_datetime(row['Datum Abgeschickt'].split(' ')[0] + ' ' +
row['Wann haben Sie die Aktivität begonnen?']
).tz_localize('Europe/Zurich').tz_convert('UTC') - pd.to_timedelta('1d')
activity_end = pd.to_datetime(row['Datum Abgeschickt'].split(' ')[0] + ' ' +
row['Wann haben Sie die Akitvität beendet?']
).tz_localize('Europe/Zurich').tz_convert('UTC') - pd.to_timedelta('1d')
data.loc[(data.index >= activity_start) & (data.index <= activity_end), 'PA_now'] = 1
data.loc[(data.index >= activity_start) & (data.index <= activity_end), 'PA_now_intensity'] = \
PA_intensity[intensity]
data.loc[
(data.index >= activity_end) & (data.index <= activity_end + pd.to_timedelta('12H')), 'PA_12h'] = 1
data.loc[(data.index >= activity_end) & (
data.index <= activity_end + pd.to_timedelta('12H')), 'PA_12h_intensity'] = PA_intensity[
intensity]
data.loc[
(data.index >= activity_end) & (data.index <= activity_end + pd.to_timedelta('24H')), 'PA_24h'] = 1
data.loc[(data.index >= activity_end) & (
data.index <= activity_end + pd.to_timedelta('24H')), 'PA_24h_intensity'] = PA_intensity[
intensity]
bg_data['ID'] = ID
loho_data['ID'] = ID
data['ID'] = ID
return bg_data, loho_data, data, [ID, len(temp), len(loho_data)]
def generate_shap_plots(explainer, setting):
importances = pd.DataFrame(index=explainer.feature_names,
data={'importance': explainer[:, :, 1].abs.mean(0).values})
importances['mod'] = importances.index.str.slice(0, 3)
mods = list(set([i[:3] for i in explainer.feature_names]))
pers_importances = [np.round(importances[importances['mod'] == i]['importance'].sum() / importances['importance'].sum(), 4) * 100 for i in mods]
pers_importances = pd.DataFrame(np.array(pers_importances).reshape(1, len(mods)), columns=mods)
pers_importances.to_csv(results_dir + f'/shap_importances_{setting}.csv')
shap.plots.beeswarm(explainer[:, :, 1], max_display=15, plot_size=(14, 12), show=False, alpha=0.3)
plt.savefig(fname=results_dir + f'/shap_plot_{setting}.pdf',
facecolor="white",
bbox_inches='tight',
dpi=300)
plt.show()
plt.close()
fig, axs_plain = plt.subplots(3, 1, figsize=(8, 12), facecolor='white', constrained_layout=False)
axs = axs_plain.ravel()
for idx, mod in enumerate([['hrv', 'HEA'], ['eda'], ['ZER']]):
ax = axs[idx]
fig.sca(ax)
# features = list(filter(lambda x: x.startswith('%s_' % mod.lower()), shap_values.feature_names))
features = importances[importances['mod'].isin(mod)].sort_values(by='importance', ascending=False)[
:5].index.to_list()
shap.plots.beeswarm(explainer[:, features, 1], max_display=5, plot_size=(10, 12),
show=False, alpha=0.3)
x_max = max(np.abs(ax.get_xlim()))
ax.set_xlim([-x_max, x_max])
# break
plt.subplots_adjust(hspace=0.35)
fig.savefig(fname=results_dir + f'/shap_plot_modality_{setting}.pdf',
facecolor="white",
bbox_inches='tight',
dpi=300)
plt.show()
plt.close()
return None
def generate_plot_tree(classifier, filepath):
lgb.plot_tree(classifier, dpi=600)
plt.savefig(fname=Path(filepath),
facecolor="white",
bbox_inches='tight',
dpi=600)
plt.show()
plt.close()
return None
def plot_curves(tpr_pers, precision_pers, score_pers,
tpr_loho, precision_loho, score_loho, prc_baseline):
# Preliminaries summary ROC Curve (x: FPR; y:TPR)
fig, (ax, ax2) = plt.subplots(1, 2, figsize=(22, 10))
fpr = np.linspace(0, 1, 100)
recall = np.linspace(1, 0, 100)
#====ROC Plot summary======
'''
tpr_gene_mean = pd.DataFrame([tpr_gene[ID][0] for ID in tpr_gene.keys()]).mean()
tpr_gene_std = pd.DataFrame([tpr_gene[ID][0] for ID in tpr_gene.keys()]).std()
roc_auc_gene_mean = np.round(np.mean([np.mean(score_gene[ID]['AUROC']) for ID in score_gene.keys()]), 2)
roc_auc_gene_std = np.round(np.std([np.mean(score_gene[ID]['AUROC']) for ID in score_gene.keys()]), 2)
ax.plot(fpr, tpr_gene_mean , color='g',label=r'Generalized: Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (roc_auc_gene_mean, roc_auc_gene_std),lw=2)
ax.fill_between(fpr, np.clip(tpr_gene_mean - tpr_gene_std, a_min=0, a_max=1), np.clip(tpr_gene_mean + tpr_gene_std, a_min=0, a_max=1), color='green', alpha=.2, label=r'$\pm$ 1 std. dev.')
'''
tpr_pers_mean = pd.DataFrame([np.mean(tpr_pers[ID]) for ID in tpr_pers.keys()]).mean()
tpr_pers_std = pd.DataFrame([np.mean(tpr_pers[ID]) for ID in tpr_pers.keys()]).std()
roc_auc_pers_mean = np.round(np.mean([np.mean(score_pers[ID]['AUROC']) for ID in score_pers.keys()]), 2)
roc_auc_pers_std = np.round(np.std([np.mean(score_pers[ID]['AUROC']) for ID in score_pers.keys()]), 2)
ax.plot(fpr, tpr_pers_mean, color='b',label=r'Personalized: Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (roc_auc_pers_mean, roc_auc_pers_std),lw=2)
ax.fill_between(fpr, np.clip(tpr_pers_mean - tpr_pers_std, a_min=0, a_max=1), np.clip(tpr_pers_mean + tpr_pers_std, a_min=0, a_max=1), color='blue', alpha=.2, label=r'$\pm$ 1 std. dev.')
#LOHO
tpr_loho_mean = pd.DataFrame([np.mean(tpr_loho[ID]) for ID in tpr_loho.keys()]).mean()
tpr_loho_std = pd.DataFrame([np.mean(tpr_loho[ID]) for ID in tpr_loho.keys()]).std()
roc_auc_loho_mean = np.round(np.mean([np.mean(score_loho[ID]['AUROC']) for ID in score_loho.keys()]), 2)
roc_auc_loho_std = np.round(np.std([np.mean(score_loho[ID]['AUROC']) for ID in score_loho.keys()]), 2)
ax.plot(fpr, tpr_loho_mean, color='darkorange',
label=r'LOHO: Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (roc_auc_loho_mean, roc_auc_loho_std), lw=2)
ax.fill_between(fpr, np.clip(tpr_loho_mean - tpr_loho_std, a_min=0, a_max=1),
np.clip(tpr_loho_mean + tpr_loho_std, a_min=0, a_max=1), color='darkorange', alpha=.2,
label=r'$\pm$ 1 std. dev.')
#====PRC Plot summary======
'''
precision_gene_mean = pd.DataFrame([precision_gene[ID][0] for ID in precision_gene.keys()]).mean()
precision_gene_std = pd.DataFrame([precision_gene[ID][0] for ID in precision_gene.keys()]).std()
prc_auc_gene_mean = np.round(np.mean([np.mean(score_gene[ID]['AUPRC']) for ID in score_gene.keys()]), 2)
prc_auc_gene_std = np.round(np.std([np.mean(score_gene[ID]['AUPRC']) for ID in score_gene.keys()]), 2)
ax2.plot(recall, precision_gene_mean , color='g',label=r'Generalized: Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (prc_auc_gene_mean, prc_auc_gene_std),lw=2)
ax2.fill_between(recall, np.clip(precision_gene_mean - precision_gene_std, a_min=0, a_max=1), np.clip(precision_gene_mean + precision_gene_std, a_min=0, a_max=1), color='green', alpha=.2, label=r'$\pm$ 1 std. dev.')
'''
precision_pers_mean = pd.DataFrame([np.mean(precision_pers[ID]) for ID in precision_pers.keys()]).mean()
precision_pers_std = pd.DataFrame([np.mean(precision_pers[ID]) for ID in precision_pers.keys()]).std()
prc_auc_pers_mean = np.round(np.mean([np.mean(score_pers[ID]['AUPRC']) for ID in score_pers.keys()]), 2)
prc_auc_pers_std = np.round(np.std([np.mean(score_pers[ID]['AUPRC']) for ID in score_pers.keys()]), 2)
ax2.plot(recall, precision_pers_mean, color='b',label=r'Personalized: Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (prc_auc_pers_mean, prc_auc_pers_std),lw=2)
ax2.fill_between(recall, np.clip(precision_pers_mean - precision_pers_std, a_min=0, a_max=1), np.clip(precision_pers_mean + precision_pers_std, a_min=0, a_max=1), color='blue', alpha=.2, label=r'$\pm$ 1 std. dev.')
# LOHO
precision_loho_mean = pd.DataFrame([np.mean(precision_loho[ID]) for ID in precision_loho.keys()]).mean()
precision_loho_std = pd.DataFrame([np.mean(precision_loho[ID]) for ID in precision_loho.keys()]).std()
prc_auc_loho_mean = np.round(np.mean([np.mean(score_loho[ID]['AUPRC']) for ID in score_loho.keys()]), 2)
prc_auc_loho_std = np.round(np.std([np.mean(score_loho[ID]['AUPRC']) for ID in score_loho.keys()]), 2)
ax2.plot(recall, precision_loho_mean, color='darkorange',
label=r'LOHO: Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (prc_auc_loho_mean, prc_auc_loho_std), lw=2)
ax2.fill_between(recall, np.clip(precision_loho_mean - precision_loho_std, a_min=0, a_max=1),
np.clip(precision_loho_mean + precision_loho_std, a_min=0, a_max=1), color='darkorange', alpha=.2,
label=r'$\pm$ 1 std. dev.')
#====================
ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',label='Chance', alpha=.8)
ax.set(xlim=[-0.02, 1.02], ylim=[-0.02, 1.02])
ax.set_ylabel('True Positive Rate')
ax.set_xlabel('False Positive Rate')
ax.legend(loc="lower right")
ax.grid()
ax2.plot([0, 1], [prc_baseline, prc_baseline], linestyle='--', lw=2, color='r', label='Baseline (%.2f)' % prc_baseline, alpha=.5)
ax2.set(xlim=[-0.02, 1.02], ylim=[-0.02, 1.02])
ax2.set_ylabel('Precision')
ax2.set_xlabel('Recall')
ax2.legend(loc="upper right")
ax2.grid()
fig.savefig(fname=results_dir + '/prcprc_plot.pdf',
facecolor="white",
bbox_inches='tight',
dpi=300)
plt.show()
plt.close()
return None