forked from kaishengtai/neuralart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcosts.lua
93 lines (84 loc) · 2.6 KB
/
costs.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
--
-- Cost functions
--
-- compute the Gramian matrix for input
function gram(input)
local k = input:size(2)
local flat = input:view(k, -1)
local gram = torch.mm(flat, flat:t())
return gram
end
function collect_activations(model, activation_layers, gram_layers)
local activations, grams = {}, {}
for i, module in ipairs(model.modules) do
local name = module._name
if name then
if activation_layers[name] then
local activation = module.output.new()
activation:resize(module.output:nElement())
activation:copy(module.output)
activations[name] = activation
end
if gram_layers[name] then
grams[name] = gram(module.output):view(-1)
end
end
end
return activations, grams
end
--
-- gradient computation functions
--
local euclidean = nn.MSECriterion()
euclidean.sizeAverage = false
if opt.cpu then
euclidean:float()
else
euclidean:cuda()
end
function style_grad(gen, orig_gram)
local k = gen:size(2)
local size = gen:nElement()
local size_sq = size * size
local gen_gram = gram(gen)
local gen_gram_flat = gen_gram:view(-1)
local loss = euclidean:forward(gen_gram_flat, orig_gram)
local grad = euclidean:backward(gen_gram_flat, orig_gram)
:view(gen_gram:size())
-- normalization helps improve the appearance of the generated image
local norm = size_sq
if opt.model == 'inception' then
norm = torch.abs(grad):mean() * size_sq
else
norm = size_sq
end
if norm > 0 then
loss = loss / norm
grad:div(norm)
end
grad = torch.mm(grad, gen:view(k, -1)):view(gen:size())
return loss, grad
end
function content_grad(gen, orig)
local gen_flat = gen:view(-1)
local loss = euclidean:forward(gen_flat, orig)
local grad = euclidean:backward(gen_flat, orig):view(gen:size())
if opt.model == 'inception' then
local norm = torch.abs(grad):mean()
if norm > 0 then
loss = loss / norm
grad:div(norm)
end
end
return loss, grad
end
-- total variation gradient
function total_var_grad(gen)
local x_diff = gen[{{}, {}, {1, -2}, {1, -2}}] - gen[{{}, {}, {1, -2}, {2, -1}}]
local y_diff = gen[{{}, {}, {1, -2}, {1, -2}}] - gen[{{}, {}, {2, -1}, {1, -2}}]
local grad = gen.new():resize(gen:size()):zero()
grad[{{}, {}, {1, -2}, {1, -2}}]:add(x_diff):add(y_diff)
grad[{{}, {}, {1, -2}, {2, -1}}]:add(-1, x_diff)
grad[{{}, {}, {2, -1} ,{1, -2}}]:add(-1, y_diff)
return grad
end