-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain_legacy.py
executable file
·429 lines (355 loc) · 16.6 KB
/
train_legacy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# original code: https://github.com/dyhan0920/PyramidNet-PyTorch/blob/master/train.py
import os
import shutil
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from sklearn.model_selection._split import StratifiedShuffleSplit
from theconf.argument_parser import ConfigArgumentParser
from theconf import Config as C
from torch.utils.data.dataset import Subset
from tqdm._tqdm import tqdm
from warmup_scheduler.scheduler import GradualWarmupScheduler
from lr_scheduler import adjust_learning_rate_resnet, adjust_learning_rate_pyramid
from network import resnet as RN
import network.pyramidnet as PYRM
from network.wideresnet import WideResNet as WRN
import utils
import warnings
from autoaug.archive import fa_reduced_cifar10, fa_reduced_imagenet, autoaug_paper_cifar10, autoaug_policy
from autoaug.augmentations import Augmentation
warnings.filterwarnings("ignore")
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = ConfigArgumentParser(conflict_handler='resolve')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--expname', default='TEST', type=str, help='name of experiment')
parser.add_argument('--cifarpath', default='/data/private/pretrainedmodels/', type=str)
parser.add_argument('--imagenetpath', default='/data/private/pretrainedmodels/imagenet/', type=str)
parser.add_argument('--autoaug', default='', type=str)
parser.add_argument('--cv', default=-1, type=int)
parser.add_argument('--only-eval', action='store_true')
parser.add_argument('--checkpoint', default='', type=str)
parser.set_defaults(bottleneck=True)
parser.set_defaults(verbose=True)
best_err1 = 100
best_err5 = 100
def main():
global args, best_err1, best_err5
args = parser.parse_args()
if args.dataset.startswith('cifar'):
normalize = transforms.Normalize(
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]]
)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
autoaug = args.autoaug
if autoaug:
print('augmentation: %s' % autoaug)
if autoaug == 'fa_reduced_cifar10':
transform_train.transforms.insert(0, Augmentation(fa_reduced_cifar10()))
elif autoaug == 'fa_reduced_imagenet':
transform_train.transforms.insert(0, Augmentation(fa_reduced_imagenet()))
elif autoaug == 'autoaug_cifar10':
transform_train.transforms.insert(0, Augmentation(autoaug_paper_cifar10()))
elif autoaug == 'autoaug_extend':
transform_train.transforms.insert(0, Augmentation(autoaug_policy()))
elif autoaug in ['default', 'inception', 'inception320']:
pass
else:
raise ValueError('not found augmentations. %s' % C.get()['aug'])
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize
])
if args.dataset == 'cifar100':
ds_train = datasets.CIFAR100(args.cifarpath, train=True, download=True, transform=transform_train)
if args.cv >= 0:
sss = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
sss = sss.split(list(range(len(ds_train))), ds_train.targets)
for _ in range(args.cv + 1):
train_idx, valid_idx = next(sss)
ds_valid = Subset(ds_train, valid_idx)
ds_train = Subset(ds_train, train_idx)
else:
ds_valid = Subset(ds_train, [])
ds_test = datasets.CIFAR100(args.cifarpath, train=False, transform=transform_test)
train_loader = torch.utils.data.DataLoader(
ds_train,
batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
tval_loader = torch.utils.data.DataLoader(ds_valid,
batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(ds_test,
batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
numberofclass = 100
elif args.dataset == 'cifar10':
ds_train = datasets.CIFAR10(args.cifarpath, train=True, download=True, transform=transform_train)
if args.cv >= 0:
sss = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
sss = sss.split(list(range(len(ds_train))), ds_train.targets)
for _ in range(args.cv + 1):
train_idx, valid_idx = next(sss)
ds_valid = Subset(ds_train, valid_idx)
ds_train = Subset(ds_train, train_idx)
else:
ds_valid = Subset(ds_train, [])
train_loader = torch.utils.data.DataLoader(
ds_train,
batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
tval_loader = torch.utils.data.DataLoader(ds_valid,
batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(args.cifarpath, train=False, transform=transform_test),
batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
numberofclass = 10
else:
raise Exception('unknown dataset: {}'.format(args.dataset))
elif args.dataset == 'imagenet':
traindir = os.path.join(args.imagenetpath, 'train')
valdir = os.path.join(args.imagenetpath, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
jittering = utils.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4)
lighting = utils.Lighting(alphastd=0.1,
eigval=[0.2175, 0.0188, 0.0045],
eigvec=[[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]])
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
jittering,
lighting,
normalize,
])
autoaug = args.autoaug
if autoaug:
print('augmentation: %s' % autoaug)
if autoaug == 'fa_reduced_cifar10':
transform_train.transforms.insert(0, Augmentation(fa_reduced_cifar10()))
elif autoaug == 'fa_reduced_imagenet':
transform_train.transforms.insert(0, Augmentation(fa_reduced_imagenet()))
elif autoaug == 'autoaug_cifar10':
transform_train.transforms.insert(0, Augmentation(autoaug_paper_cifar10()))
elif autoaug == 'autoaug_extend':
transform_train.transforms.insert(0, Augmentation(autoaug_policy()))
elif autoaug in ['default', 'inception', 'inception320']:
pass
else:
raise ValueError('not found augmentations. %s' % C.get()['aug'])
train_dataset = datasets.ImageFolder(traindir, transform_train)
if args.cv >= 0:
sss = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
sss = sss.split(list(range(len(train_dataset))), train_dataset.targets)
for _ in range(args.cv + 1):
train_idx, valid_idx = next(sss)
valid_dataset = Subset(train_dataset, valid_idx)
train_dataset = Subset(train_dataset, train_idx)
else:
valid_dataset = Subset(train_dataset, [])
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
tval_loader = torch.utils.data.DataLoader(valid_dataset,
batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
numberofclass = 1000
else:
raise Exception('unknown dataset: {}'.format(args.dataset))
print("=> creating model '{}'".format(args.net_type))
if args.net_type == 'resnet':
model = RN.ResNet(args.dataset, args.depth, numberofclass, True)
elif args.net_type == 'pyramidnet':
model = PYRM.PyramidNet(args.dataset, args.depth, args.alpha, numberofclass, True)
elif 'wresnet' in args.net_type:
model = WRN(args.depth, args.alpha, dropout_rate=0.0, num_classes=numberofclass)
else:
raise ValueError('unknown network architecture: {}'.format(args.net_type))
model = torch.nn.DataParallel(model).cuda()
print('the number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=C.get()['weight_decay'], nesterov=True)
lr_scheduler_type = C.get()['lr_schedule'].get('type', 'cosine')
if lr_scheduler_type == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=C.get()['epochs'], eta_min=0.)
elif lr_scheduler_type == 'resnet':
scheduler = adjust_learning_rate_resnet(optimizer)
elif lr_scheduler_type == 'pyramid':
scheduler = adjust_learning_rate_pyramid(optimizer, C.get()['epochs'])
else:
raise ValueError('invalid lr_schduler=%s' % lr_scheduler_type)
if C.get()['lr_schedule'].get('warmup', None):
scheduler = GradualWarmupScheduler(
optimizer,
multiplier=C.get()['lr_schedule']['warmup']['multiplier'],
total_epoch=C.get()['lr_schedule']['warmup']['epoch'],
after_scheduler=scheduler
)
for epoch in range(0, args.epochs):
scheduler.step(epoch)
# train for one epoch
model.train()
err1, err5, train_loss = run_epoch(train_loader, model, criterion, optimizer, epoch, 'train')
train_err1 = err1
err1, err5, train_loss = run_epoch(tval_loader, model, criterion, None, epoch, 'train-val')
# evaluate on validation set
model.eval()
err1, err5, val_loss = run_epoch(val_loader, model, criterion, None, epoch, 'valid')
# remember best prec@1 and save checkpoint
is_best = err1 <= best_err1
best_err1 = min(err1, best_err1)
if is_best:
best_err5 = err5
print('Current Best (top-1 and 5 error):', best_err1, best_err5)
save_checkpoint({
'epoch': epoch,
'arch': args.net_type,
'state_dict': model.state_dict(),
'best_err1': best_err1,
'best_err5': best_err5,
'optimizer': optimizer.state_dict(),
}, is_best, filename='checkpoint_e%d_top1_%.3f_%.3f.pth' % (epoch, train_err1, err1))
print('Best(top-1 and 5 error):', best_err1, best_err5)
def run_epoch(loader, model, criterion, optimizer, epoch, tag):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
if optimizer:
current_lr = get_learning_rate(optimizer)[0]
else:
current_lr = None
tqdm_disable = bool(os.environ.get('TASK_NAME', '')) # for KakaoBrain
loader = tqdm(loader, disable=tqdm_disable)
loader.set_description('[%s %04d/%04d]' % (tag, epoch, args.epochs))
for i, (input, target) in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
input, target = input.cuda(), target.cuda()
r = np.random.rand(1)
if args.cutmix_beta > 0 and r < args.cutmix_prob and tag == 'train':
# mixed sample
rand_index = torch.randperm(input.size()[0]).cuda()
target_a = target
target_b = target[rand_index]
lam = np.random.beta(args.cutmix_beta, args.cutmix_beta)
bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
input[:, :, bbx1:bbx2, bby1:bby2] = input[rand_index, :, bbx1:bbx2, bby1:bby2]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
output = model(input)
loss = criterion(output, target_a) * lam + criterion(output, target_b) * (1. - lam)
else:
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
losses.update(loss.item(), input.size(0))
if len(target.size()) == 1:
err1, err5 = accuracy(output.data, target, topk=(1, 5))
top1.update(err1.item(), input.size(0))
top5.update(err5.item(), input.size(0))
if optimizer:
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
if C.get()['gradient_clip'] > 0:
nn.utils.clip_grad_norm_(model.parameters(), C.get()['gradient_clip'])
optimizer.step()
else:
del loss, output
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
loader.set_postfix(lr=current_lr, batch_time=batch_time.avg, data_time=data_time.avg, loss=losses.avg, top1=top1.avg, top5=top5.avg)
if tqdm_disable:
print('[%s %03d/%03d] %s' % (tag, epoch, args.epochs, dict(lr=current_lr, batch_time=batch_time.avg, data_time=data_time.avg, loss=losses.avg, top1=top1.avg, top5=top5.avg)))
return top1.avg, top5.avg, losses.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
if not args.expname:
return
directory = "runs/%s/" % args.expname
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + filename
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join('runs', args.expname, 'model_best.pth'))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_learning_rate(optimizer):
lr = []
for param_group in optimizer.param_groups:
lr += [param_group['lr']]
return lr
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
wrong_k = batch_size - correct_k
res.append(wrong_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()