-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_main.py
224 lines (182 loc) · 6.85 KB
/
run_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from maze_env import Maze
from RL_brainsample_PI import rlalgorithm as rlalg1
from RL_brain_policy import rlalgorithm as rlalg2
from RL_brain_value import rlalgorithm as rlalg3
from RL_brain_sarsa import rlalgorithm as rlalg4
from RL_brain_q_learning import rlalgorithm as rlalg5
from RL_brain_expected_sarsa import rlalgorithm as rlalg6
from RL_brain_double_q_learning import rlalgorithm as rlalg7
from RL_brain_sarsa_lambda import rlalgorithm as rlalg8
import numpy as np
import sys
import matplotlib.pyplot as plt
import pickle
import time
DEBUG=1
def debug(debuglevel, msg, **kwargs):
if debuglevel <= DEBUG:
if 'printNow' in kwargs:
if kwargs['printNow']:
print(msg)
else:
print(msg)
def plot_rewards(experiments):
color_list=['blue','green','red','black','magenta']
label_list=[]
for i, (env, RL, data) in enumerate(experiments):
x_values=range(len(data['global_reward']))
label_list.append(RL.display_name)
y_values=data['global_reward']
plt.plot(x_values, y_values, c=color_list[i],label=label_list[-1])
plt.legend(label_list)
plt.title("Reward Progress Task 1", fontsize=24)
plt.xlabel("Episode", fontsize=18)
plt.ylabel("Return", fontsize=18)
plt.tick_params(axis='both', which='major',
labelsize=14)
plt.show()
def update(env, RL, data, episodes=50):
global_reward = np.zeros(episodes)
data['global_reward']=global_reward
for episode in range(episodes):
t=0
# initial state
if episode == 0:
state = env.reset(value = 0)
else:
state = env.reset()
debug(2,'state(ep:{},t:{})={}'.format(episode, t, state))
# RL choose action based on state
action = RL.choose_action(state)
counter = 0
while True:
# fresh env
if(showRender or (episode % renderEveryNth)==0):
env.render(sim_speed)
counter += 1
# RL take action and get next state and reward
state_, reward, done = env.step(action)
global_reward[episode] += reward
debug(2,'state(ep:{},t:{})={}'.format(episode, t, state))
debug(2,'reward_{}= total return_t ={} Mean50={}'.format(reward, global_reward[episode],np.mean(global_reward[-50:])))
if (counter > 1000):
done = True
if done:
state_ = "terminal"
# RL learn from this transition
# and determine next state and action
state, action = RL.learn(state, action, reward, state_)
#print(counter)
# break while loop when end of this episode
if done:
break
else:
t=t+1
debug(1,"({}) Episode {}: Length={} Total return = {} ".format(RL.display_name,episode, t, global_reward[episode],global_reward[episode]),printNow=(episode%printEveryNth==0))
if(episode>=100):
debug(1," Median100={} Variance100={}".format(np.median(global_reward[episode-100:episode]),np.var(global_reward[episode-100:episode])),printNow=(episode%printEveryNth==0))
# end of game
print('game over -- Algorithm {} completed'.format(RL.display_name))
env.destroy()
if __name__ == "__main__":
sim_speed = 0
#Example Short Fast for Debugging
showRender=True
episodes=1000
renderEveryNth=5
printEveryNth=1
do_plot_rewards=True
#Example Full Run, you may need to run longer
#showRender=False
#episodes=2000
#renderEveryNth=10000
#printEveryNth=100
#do_plot_rewards=True
if(len(sys.argv)>1):
episodes = int(sys.argv[1])
if(len(sys.argv)>2):
showRender = sys.argv[2] in ['true','True','T','t']
if(len(sys.argv)>3):
datafile = sys.argv[3]
# Task Specifications
agentXY=[0,0]
goalXY=[4,4]
# Task 1
wall_shape=np.array([[2,2],[3,6]])
pits=np.array([[6,3],[1,4]])
# Task 2
wall_shape=np.array([[6,2],[5,2],[4,2],[3,2],[2,2],[6,3],[6,4],[6,5],
[2,3],[2,4],[2,5]])
pits=[]
# Task 3
wall_shape=np.array([[6,3],[6,3],[6,2],[5,2],[4,2],[3,2],[3,3],
[3,4],[3,5],[3,6],[4,6],[5,6],[5,7],[7,3]])
pits=np.array([[1,3],[0,5], [7,7], [8,5]])
"""
# example ignore
env1 = Maze(agentXY,goalXY,wall_shape, pits)
RL1 = rlalg1(actions=list(range(env1.n_actions)))
data1={}
env1.after(10, update(env1, RL1, data1, episodes))
env1.mainloop()
experiments = [(env1,RL1, data1)]
"""
# policy
env2 = Maze(agentXY,goalXY,wall_shape,pits)
RL2 = rlalg2(actions=list(range(env2.n_actions)), env = env2)
data2={}
env2.after(10, update(env2, RL2, data2, episodes))
env2.mainloop()
experiments=[(env2,RL2, data2)]
# value
env3 = Maze(agentXY,goalXY,wall_shape,pits)
RL3 = rlalg3(actions=list(range(env3.n_actions)), env = env3)
data3={}
env3.after(10, update(env3, RL3, data3, episodes))
env3.mainloop()
experiments.append((env3,RL3, data3))
# sarsa
env4 = Maze(agentXY,goalXY,wall_shape,pits)
RL4 = rlalg4(actions=list(range(env4.n_actions)))
data4={}
env4.after(10, update(env4, RL4, data4, episodes))
env4.mainloop()
experiments= [(env4,RL4, data4)]
# expected sarsa
env6 = Maze(agentXY,goalXY,wall_shape,pits)
RL6 = rlalg6(actions=list(range(env6.n_actions)))
data6={}
env6.after(10, update(env6, RL6, data6, episodes))
env6.mainloop()
experiments.append((env6,RL6, data6))
# q learning
env5 = Maze(agentXY,goalXY,wall_shape,pits)
RL5 = rlalg5(actions=list(range(env5.n_actions)))
data5={}
env5.after(10, update(env5, RL5, data5, episodes))
env5.mainloop()
experiments.append((env5,RL5, data5))
# double q-learning
env7 = Maze(agentXY,goalXY,wall_shape,pits)
RL7 = rlalg7(actions=list(range(env7.n_actions)))
data7={}
env7.after(10, update(env7, RL7, data7, episodes))
env7.mainloop()
experiments.append((env7,RL7, data7))
# sarsa lamda
env8 = Maze(agentXY,goalXY,wall_shape,pits)
RL8 = rlalg8(actions=list(range(env8.n_actions)))
data8={}
env8.after(10, update(env8, RL8, data8, episodes))
env8.mainloop()
experiments.append((env8,RL8, data8))
print("All experiments complete")
for env, RL, data in experiments:
print("{} : max reward = {} medLast100={} varLast100={}".format(RL.display_name, np.max(data['global_reward']),np.median(data['global_reward'][-100:]), np.var(data['global_reward'][-100:])))
if(do_plot_rewards):
#Simple plot of return for each episode and algorithm, you can make more informative plots
plot_rewards(experiments)
#Not implemented yet
#if(do_save_data):
# for env, RL, data in experiments:
# saveData(env,RL,data)