-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRL_brain_q_learning.py
58 lines (43 loc) · 1.86 KB
/
RL_brain_q_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import pandas as pd
class rlalgorithm:
def __init__(self, actions, learning_rate=0.1, reward_decay=0.9, e_greedy=0.1):
self.actions = actions
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon = e_greedy
self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)
self.display_name="q learning"
'''Choose the next action to take given the observed state using an epsilon greedy policy'''
def choose_action(self, observation):
observation = str(observation)
self.check_state_exist(observation)
#BUG: Epsilon should be .1 and signify the small probability of NOT choosing max action
if np.random.uniform() >= self.epsilon:
state_action = self.q_table.loc[observation, :]
action = np.random.choice(state_action[state_action == np.max(state_action)].index)
else:
action = np.random.choice(self.actions)
return action
'''Update the Q(S,A) state-action value table using sarsa
'''
def learn(self, s, a, r, s_):
s = str(s)
s_ = str(s_)
self.check_state_exist(s_)
a_ = self.choose_action(str(s_))
self.q_table.loc[s, a] += self.lr * (r + self.gamma * self.compute_max_q(s_) - self.q_table.loc[s, a])
return s_, a_
def compute_max_q(self, s_):
return self.q_table.loc[s_].max()
'''States are dynamically added to the Q(S,A) table as they are encountered'''
def check_state_exist(self, state):
if state not in self.q_table.index:
# append new state to q table
self.q_table = self.q_table.append(
pd.Series(
[0]*len(self.actions),
index=self.q_table.columns,
name=state,
)
)