-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtest.py
344 lines (262 loc) · 14.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import argparse
import torch
import numpy as np, h5py
import os
import torch.optim as optim
import torchvision
from backbones.ncsnpp_generator_adagn import NCSNpp
from dataset import CreateDatasetSynthesis
import torch.nn.functional as F
import torchvision.transforms as transforms
def psnr(img1, img2):
#Peak Signal to Noise Ratio
mse = torch.mean((img1 - img2) ** 2)
return 20 * torch.log10(img1.max() / torch.sqrt(mse))
#%% Diffusion coefficients
def var_func_vp(t, beta_min, beta_max):
log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min
var = 1. - torch.exp(2. * log_mean_coeff)
return var
def var_func_geometric(t, beta_min, beta_max):
return beta_min * ((beta_max / beta_min) ** t)
def extract(input, t, shape):
out = torch.gather(input, 0, t)
reshape = [shape[0]] + [1] * (len(shape) - 1)
out = out.reshape(*reshape)
return out
def get_time_schedule(args, device):
n_timestep = args.num_timesteps
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
return t.to(device)
def get_sigma_schedule(args, device):
n_timestep = args.num_timesteps
beta_min = args.beta_min
beta_max = args.beta_max
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
if args.use_geometric:
var = var_func_geometric(t, beta_min, beta_max)
else:
var = var_func_vp(t, beta_min, beta_max)
alpha_bars = 1.0 - var
betas = 1 - alpha_bars[1:] / alpha_bars[:-1]
first = torch.tensor(1e-8)
betas = torch.cat((first[None], betas)).to(device)
betas = betas.type(torch.float32)
sigmas = betas**0.5
a_s = torch.sqrt(1-betas)
return sigmas, a_s, betas
#%% posterior sampling
class Posterior_Coefficients():
def __init__(self, args, device):
_, _, self.betas = get_sigma_schedule(args, device=device)
#we don't need the zeros
self.betas = self.betas.type(torch.float32)[1:]
self.alphas = 1 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, 0)
self.alphas_cumprod_prev = torch.cat(
(torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0
)
self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1)
self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod))
self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod))
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20))
def sample_posterior(coefficients, x_0,x_t, t):
def q_posterior(x_0, x_t, t):
mean = (
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
)
var = extract(coefficients.posterior_variance, t, x_t.shape)
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
return mean, var, log_var_clipped
def p_sample(x_0, x_t, t):
mean, _, log_var = q_posterior(x_0, x_t, t)
noise = torch.randn_like(x_t)
nonzero_mask = (1 - (t == 0).type(torch.float32))
return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise
sample_x_pos = p_sample(x_0, x_t, t)
return sample_x_pos
def sample_from_model(coefficients, generator, n_time, x_init, T, opt):
x = x_init[:,[0],:]
source = x_init[:,[1],:]
with torch.no_grad():
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)#.to(x.device)
x_0 = generator(torch.cat((x,source),axis=1), t_time, latent_z)
x_new = sample_posterior(coefficients, x_0[:,[0],:], x, t)
x = x_new.detach()
return x
def load_checkpoint(checkpoint_dir, netG, name_of_network, epoch,device = 'cuda:0'):
checkpoint_file = checkpoint_dir.format(name_of_network, epoch)
checkpoint = torch.load(checkpoint_file, map_location=device)
ckpt = checkpoint
for key in list(ckpt.keys()):
ckpt[key[7:]] = ckpt.pop(key)
netG.load_state_dict(ckpt)
netG.eval()
#%%
def sample_and_test(args):
torch.manual_seed(42)
# device = 'cuda:0'
torch.cuda.set_device(args.gpu_chose)
device = torch.device('cuda:{}'.format(args.gpu_chose))
epoch_chosen=args.which_epoch
to_range_0_1 = lambda x: (x + 1.) / 2.
#loading dataset
phase='test'
dataset=CreateDatasetSynthesis('test', args.input_path, args.contrast1, args.contrast2)
data_loader = torch.utils.data.DataLoader(dataset,
batch_size=1,
shuffle=False,
num_workers=4)
#Initializing and loading network
gen_diffusive_1 = NCSNpp(args).to(device)
gen_diffusive_2 = NCSNpp(args).to(device)
exp = args.exp
output_dir = args.output_path
exp_path = os.path.join(output_dir,exp)
checkpoint_file = exp_path + "/{}_{}.pth"
load_checkpoint(checkpoint_file, gen_diffusive_1,'gen_diffusive_1',epoch=str(epoch_chosen), device = device)
load_checkpoint(checkpoint_file, gen_diffusive_2,'gen_diffusive_2',epoch=str(epoch_chosen), device = device)
T = get_time_schedule(args, device)
pos_coeff = Posterior_Coefficients(args, device)
save_dir = exp_path + "/generated_samples/epoch_{}".format(epoch_chosen)
crop = transforms.CenterCrop((256, 152))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
loss1 = np.zeros((1,len(data_loader)))
loss2 = np.zeros((1,len(data_loader)))
syn_im1=np.zeros((256,256,len(data_loader)))
syn_im2=np.zeros((256,256,len(data_loader)))
for iteration, (x , y) in enumerate(data_loader):
real_data = x.to(device, non_blocking=True)
source_data = y.to(device, non_blocking=True)
x1_t = torch.cat((torch.randn_like(real_data),source_data),axis=1)
#diffusion steps
fake_sample1 = sample_from_model(pos_coeff, gen_diffusive_1, args.num_timesteps, x1_t, T, args)
fake_sample1 = to_range_0_1(fake_sample1) ; fake_sample1 = fake_sample1/fake_sample1.max()
real_data = to_range_0_1(real_data) ; real_data = real_data/real_data.max()
source_data = to_range_0_1(source_data); source_data = source_data/source_data.max()
fake_sample1 = crop(fake_sample1)
real_data = crop(real_data)
source_data = crop(source_data)
syn_im1[:,:,iteration]=np.squeeze(fake_sample1.cpu().numpy())
loss1[0, iteration] = psnr(fake_sample1, real_data).cpu().numpy()
print(str(iteration))
fake_sample1 = torch.cat((source_data, fake_sample1, real_data),axis=-1)
torchvision.utils.save_image(fake_sample1, '{}/{}_samples1_{}.jpg'.format(save_dir, phase, iteration), normalize=True)
for iteration, (x , y) in enumerate(data_loader):
real_data = y.to(device, non_blocking=True)
source_data = x.to(device, non_blocking=True)
x2_t = torch.cat((torch.randn_like(real_data),source_data),axis=1)
#diffusion steps
fake_sample2 = sample_from_model(pos_coeff, gen_diffusive_2, args.num_timesteps, x2_t, T, args)
fake_sample2 = to_range_0_1(fake_sample2) ; fake_sample2 = fake_sample2/fake_sample2.max()
real_data = to_range_0_1(real_data) ; real_data = real_data/real_data.max()
source_data = to_range_0_1(source_data); source_data = source_data/source_data.max()
fake_sample2 = crop(fake_sample2)
real_data = crop(real_data)
source_data = crop(source_data)
syn_im2[:,:,iteration]=np.squeeze(fake_sample2.cpu().numpy())
loss2[0, iteration] = psnr(fake_sample2, real_data).cpu().numpy()
print(str(iteration))
fake_sample2 = torch.cat((source_data, fake_sample2, real_data),axis=-1)
torchvision.utils.save_image(fake_sample2, '{}/{}_samples2_{}.jpg'.format(save_dir, phase, iteration), normalize=True)
print(np.nanmean(loss1))
np.save('{}/psnr_values1.npy'.format(save_dir), loss1)
print(np.nanmean(loss2))
np.save('{}/psnr_values2.npy'.format(save_dir), loss2)
f = h5py.File(save_dir + '/im_syn.mat', "w")
f.create_dataset('images_'+args.contrast1+'syn', data=syn_im1)
f.create_dataset('images_'+args.contrast2+'syn', data=syn_im2)
f.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser('syndiff parameters')
parser.add_argument('--seed', type=int, default=1024,
help='seed used for initialization')
parser.add_argument('--compute_fid', action='store_true', default=False,
help='whether or not compute FID')
parser.add_argument('--epoch_id', type=int,default=1000)
parser.add_argument('--num_channels', type=int, default=3,
help='channel of image')
parser.add_argument('--centered', action='store_false', default=True,
help='-1,1 scale')
parser.add_argument('--use_geometric', action='store_true',default=False)
parser.add_argument('--beta_min', type=float, default= 0.1,
help='beta_min for diffusion')
parser.add_argument('--beta_max', type=float, default=20.,
help='beta_max for diffusion')
parser.add_argument('--num_channels_dae', type=int, default=128,
help='number of initial channels in denosing model')
parser.add_argument('--n_mlp', type=int, default=3,
help='number of mlp layers for z')
parser.add_argument('--ch_mult', nargs='+', type=int,
help='channel multiplier')
parser.add_argument('--num_res_blocks', type=int, default=2,
help='number of resnet blocks per scale')
parser.add_argument('--attn_resolutions', default=(16,),
help='resolution of applying attention')
parser.add_argument('--dropout', type=float, default=0.,
help='drop-out rate')
parser.add_argument('--resamp_with_conv', action='store_false', default=True,
help='always up/down sampling with conv')
parser.add_argument('--conditional', action='store_false', default=True,
help='noise conditional')
parser.add_argument('--fir', action='store_false', default=True,
help='FIR')
parser.add_argument('--fir_kernel', default=[1, 3, 3, 1],
help='FIR kernel')
parser.add_argument('--skip_rescale', action='store_false', default=True,
help='skip rescale')
parser.add_argument('--resblock_type', default='biggan',
help='tyle of resnet block, choice in biggan and ddpm')
parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'],
help='progressive type for output')
parser.add_argument('--progressive_input', type=str, default='residual', choices=['none', 'input_skip', 'residual'],
help='progressive type for input')
parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'],
help='progressive combine method.')
parser.add_argument('--embedding_type', type=str, default='positional', choices=['positional', 'fourier'],
help='type of time embedding')
parser.add_argument('--fourier_scale', type=float, default=16.,
help='scale of fourier transform')
parser.add_argument('--not_use_tanh', action='store_true',default=False)
#geenrator and training
parser.add_argument('--exp', default='ixi_synth', help='name of experiment')
parser.add_argument('--input_path', help='path to input data')
parser.add_argument('--output_path', help='path to output saves')
parser.add_argument('--dataset', default='cifar10', help='name of dataset')
parser.add_argument('--image_size', type=int, default=32,
help='size of image')
parser.add_argument('--nz', type=int, default=100)
parser.add_argument('--num_timesteps', type=int, default=4)
parser.add_argument('--z_emb_dim', type=int, default=256)
parser.add_argument('--t_emb_dim', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=1, help='sample generating batch size')
#optimizaer parameters
parser.add_argument('--lr_g', type=float, default=1.5e-4, help='learning rate g')
parser.add_argument('--beta1', type=float, default=0.5,
help='beta1 for adam')
parser.add_argument('--beta2', type=float, default=0.9,
help='beta2 for adam')
parser.add_argument('--contrast1', type=str, default='T1',
help='contrast selection for model')
parser.add_argument('--contrast2', type=str, default='T2',
help='contrast selection for model')
parser.add_argument('--which_epoch', type=int, default=50)
parser.add_argument('--gpu_chose', type=int, default=0)
parser.add_argument('--source', type=str, default='T2',
help='source contrast')
args = parser.parse_args()
sample_and_test(args)