-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptions.py
85 lines (66 loc) · 4.84 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import argparse
import os
class TrainOptions():
def __init__(self):
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
self.initialized = False
def initialize(self):
self.parser.add_argument('--full_dose_path', required=True, help='Path to full dose images')
self.parser.add_argument('--quarter_dose_path', required=True, help='Path to quarter dose images')
self.parser.add_argument('--dataset_ratio', type=float, default=0.075, help='The ratio of dataset to use (in case of big dataset)')
self.parser.add_argument('--train_ratio', type=float, default=0.8, help='Ratio of train dataset to all dataset')
self.parser.add_argument('--batch_size', type=int, default=1, help='Batch size')
self.parser.add_argument('--in_ch', type=int, default=1, help='Number of input image channels')
self.parser.add_argument('--out_ch', type=int, default=1, help='Number of output image channels')
self.parser.add_argument('--learning_rate', type=float, default=5e-5, help='Learning rate')
self.parser.add_argument('--max_epoch', type=int, default=100, help='Maximum number of epochs')
self.parser.add_argument('--continue_to_train', action='store_true', help='Continue any interrupted training')
self.parser.add_argument('--path_to_save', type=str, required=True, help='Path to save the trained model')
self.parser.add_argument('--ckpt_path', type=str, default='-', help='Path to trained and saved checkpoint model')
self.parser.add_argument('--validation_freq', type=int, default=10, help='Frequency to run validation')
self.parser.add_argument('--save_freq', type=int, default=20, help='Frequency to save model')
self.parser.add_argument('--batch_number', type=int, default=3, help='Number of a batch in validation to show the sample images')
self.parser.add_argument('--n_layer', type=int, default=4, help='Number of transformer block layers')
self.parser.add_argument('--num_blocks', nargs='+', type=int, default=[4, 6, 6, 8], help='Number of transformer blocks')
self.parser.add_argument('--dim', type=int, default=48, help='Transformer block dimension')
self.parser.add_argument('--num_refinement_blocks', type=int, default=2, help='Number of refinement blocks')
self.initialized = True
def parse(self):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print(f'{k}: {v}')
print('-------------- End ----------------')
return self.opt
class TestOptions():
def __init__(self):
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
self.initialized = False
def initialize(self):
self.parser.add_argument('--full_dose_path', required=True, help='Path to full dose images')
self.parser.add_argument('--quarter_dose_path', required=True, help='Path to quarter dose images')
self.parser.add_argument('--dataset_ratio', type=float, default=0.05, help='The ratio of dataset to use (in case of big dataset)')
self.parser.add_argument('--train_ratio', type=float, default=0.8, help='Ratio of train dataset to all dataset')
self.parser.add_argument('--batch_size', type=int, default=1, help='Batch size')
self.parser.add_argument('--in_ch', type=int, default=1, help='Number of input image channels')
self.parser.add_argument('--out_ch', type=int, default=1, help='Number of output image channels')
self.parser.add_argument('--ckpt_path', type=str, required = True, help='Path to trained and saved checkpoint model')
self.parser.add_argument('--output_root', type=str, required = True, help='Path to save denoised imgs')
self.parser.add_argument('--n_layer', type=int, default=4, help='Number of transformer block layers')
self.parser.add_argument('--num_blocks', nargs='+', type=int, default=[4, 6, 6, 8], help='Number of transformer blocks')
self.parser.add_argument('--dim', type=int, default=48, help='Transformer block dimension')
self.parser.add_argument('--num_refinement_blocks', type=int, default=2, help='Number of refinement blocks')
self.initialized = True
def parse(self):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print(f'{k}: {v}')
print('-------------- End ----------------')
return self.opt