forked from bevyengine/bevy
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcustom_query_param.rs
195 lines (180 loc) · 6.13 KB
/
custom_query_param.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
//! This example illustrates the usage of the [`QueryData`] derive macro, which allows
//! defining custom query and filter types.
//!
//! While regular tuple queries work great in most of simple scenarios, using custom queries
//! declared as named structs can bring the following advantages:
//! - They help to avoid destructuring or using `q.0, q.1, ...` access pattern.
//! - Adding, removing components or changing items order with structs greatly reduces maintenance
//! burden, as you don't need to update statements that destructure tuples, care about order
//! of elements, etc. Instead, you can just add or remove places where a certain element is used.
//! - Named structs enable the composition pattern, that makes query types easier to re-use.
//! - You can bypass the limit of 15 components that exists for query tuples.
//!
//! For more details on the [`QueryData`] derive macro, see the trait documentation.
use bevy::{
ecs::query::{QueryData, QueryFilter},
prelude::*,
};
use std::fmt::Debug;
fn main() {
App::new()
.add_systems(Startup, spawn)
.add_systems(
Update,
(
print_components_read_only,
print_components_iter_mut,
print_components_iter,
print_components_tuple,
)
.chain(),
)
.run();
}
#[derive(Component, Debug)]
struct ComponentA;
#[derive(Component, Debug)]
struct ComponentB;
#[derive(Component, Debug)]
struct ComponentC;
#[derive(Component, Debug)]
struct ComponentD;
#[derive(Component, Debug)]
struct ComponentZ;
#[derive(QueryData)]
#[query_data(derive(Debug))]
struct ReadOnlyCustomQuery<T: Component + Debug, P: Component + Debug> {
entity: Entity,
a: &'static ComponentA,
b: Option<&'static ComponentB>,
nested: NestedQuery,
optional_nested: Option<NestedQuery>,
optional_tuple: Option<(&'static ComponentB, &'static ComponentZ)>,
generic: GenericQuery<T, P>,
empty: EmptyQuery,
}
fn print_components_read_only(
query: Query<
ReadOnlyCustomQuery<ComponentC, ComponentD>,
CustomQueryFilter<ComponentC, ComponentD>,
>,
) {
println!("Print components (read_only):");
for e in &query {
println!("Entity: {}", e.entity);
println!("A: {:?}", e.a);
println!("B: {:?}", e.b);
println!("Nested: {:?}", e.nested);
println!("Optional nested: {:?}", e.optional_nested);
println!("Optional tuple: {:?}", e.optional_tuple);
println!("Generic: {:?}", e.generic);
}
println!();
}
/// If you are going to mutate the data in a query, you must mark it with the `mutable` attribute.
///
/// The [`QueryData`] derive macro will still create a read-only version, which will be have `ReadOnly`
/// suffix.
/// Note: if you want to use derive macros with read-only query variants, you need to pass them with
/// using the `derive` attribute.
#[derive(QueryData)]
#[query_data(mutable, derive(Debug))]
struct CustomQuery<T: Component + Debug, P: Component + Debug> {
entity: Entity,
a: &'static mut ComponentA,
b: Option<&'static mut ComponentB>,
nested: NestedQuery,
optional_nested: Option<NestedQuery>,
optional_tuple: Option<(NestedQuery, &'static mut ComponentZ)>,
generic: GenericQuery<T, P>,
empty: EmptyQuery,
}
// This is a valid query as well, which would iterate over every entity.
#[derive(QueryData)]
#[query_data(derive(Debug))]
struct EmptyQuery {
empty: (),
}
#[derive(QueryData)]
#[query_data(derive(Debug))]
struct NestedQuery {
c: &'static ComponentC,
d: Option<&'static ComponentD>,
}
#[derive(QueryData)]
#[query_data(derive(Debug))]
struct GenericQuery<T: Component, P: Component> {
generic: (&'static T, &'static P),
}
#[derive(QueryFilter)]
struct CustomQueryFilter<T: Component, P: Component> {
_c: With<ComponentC>,
_d: With<ComponentD>,
_or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
_generic_tuple: (With<T>, With<P>),
}
fn spawn(mut commands: Commands) {
commands.spawn((ComponentA, ComponentB, ComponentC, ComponentD));
}
fn print_components_iter_mut(
mut query: Query<
CustomQuery<ComponentC, ComponentD>,
CustomQueryFilter<ComponentC, ComponentD>,
>,
) {
println!("Print components (iter_mut):");
for e in &mut query {
// Re-declaring the variable to illustrate the type of the actual iterator item.
let e: CustomQueryItem<'_, _, _> = e;
println!("Entity: {}", e.entity);
println!("A: {:?}", e.a);
println!("B: {:?}", e.b);
println!("Optional nested: {:?}", e.optional_nested);
println!("Optional tuple: {:?}", e.optional_tuple);
println!("Nested: {:?}", e.nested);
println!("Generic: {:?}", e.generic);
}
println!();
}
fn print_components_iter(
query: Query<CustomQuery<ComponentC, ComponentD>, CustomQueryFilter<ComponentC, ComponentD>>,
) {
println!("Print components (iter):");
for e in &query {
// Re-declaring the variable to illustrate the type of the actual iterator item.
let e: CustomQueryReadOnlyItem<'_, _, _> = e;
println!("Entity: {}", e.entity);
println!("A: {:?}", e.a);
println!("B: {:?}", e.b);
println!("Nested: {:?}", e.nested);
println!("Generic: {:?}", e.generic);
}
println!();
}
type NestedTupleQuery<'w> = (&'w ComponentC, &'w ComponentD);
type GenericTupleQuery<'w, T, P> = (&'w T, &'w P);
fn print_components_tuple(
query: Query<
(
Entity,
&ComponentA,
&ComponentB,
NestedTupleQuery,
GenericTupleQuery<ComponentC, ComponentD>,
),
(
With<ComponentC>,
With<ComponentD>,
Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
),
>,
) {
println!("Print components (tuple):");
for (entity, a, b, nested, (generic_c, generic_d)) in &query {
println!("Entity: {entity}");
println!("A: {a:?}");
println!("B: {b:?}");
println!("Nested: {:?} {:?}", nested.0, nested.1);
println!("Generic: {generic_c:?} {generic_d:?}");
}
}